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Abstract

This study proposes signal processing methods to presume or classify brain state

of a human by using signals observed by electrodes installed on a scalp (EEG;

Electroencephalogram). The issue of classifying the brain states from EEG signals

is important for realization of brain computer/machine interface (BCI/BMI) and

its applications (e.g. rehabilitation). Target states of the brain to be classified in

the study are brain states when the human is imaging movements of he/she own

hands and feet. The task performing the imaginations is called motor-imagery

(MI) task. The goal in this classification is to classify EEG signals into classes

corresponding to motor-imagery parts of body (e.g. right/left hand, feet)

As features in the EEG signals associated with the MI tasks, the variation in

energy of certain bands observed around motor cortex is known. For extracting the

features, we can use a spatial filter that weights with different coefficients to each

electrode, a frequency filter that extracts the certain bands, and a time window that

removes periods not including feature components. In many cases, the parameters

such as the coefficients of the filters and the window are empirically determined

based on knowledge of neuroscience. For instance, the electrodes are installed

around motor cortex, the passband of the frequency filter is set to 7 to 30 Hz

including the band of the so-called mu rhythm the energy of which decrease by

MI tasks, and the time window extracts signals observed from a start cue having
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a subject perform a task to an end cue. However, the optimal parameters for the

filters highly depend on measurement environments and individuals. Therefore, a

decision method for the parameters adapted for data is needed.

This study proposes methods to determine the parameters by learning ob-

served samples. The proposed methods expand the concept of the common spatial

patterns (CSP) method that is well-known for designing effective spatial filters for

classification in 2-class MI-BCI. The proposed methods extract a signal from a

raw observed signal by the following way. First, we adopt an FIR filter as the

frequency filter. Second, we use linear combination of a multi-channel signal and

weight coefficients as the spatial filter. Finally, we apply a time window with

binary coefficients to a signal after the start cue. To determine the parameters

composed of three elements (frequency, space, time), we take advantage of EEG

signals with class labels as a learning dataset. In the learning, the parameters

are determined in such a way that the ratio of the energy of the extracted signals

between two classes is maximized. We propose an approximate solution using

a method that maximizes alternately parameters of each element. Moreover, we

introduce an orthogonal constraint over the coefficient vectors of the multiple FIR

filters. We propose a sequentially optimizing method for the optimization problem

including the orthogonal constraint. In this way, the proposed method designs a set

of the filters (filterbank) that have different characteristics in each other. Even in

the situation that some components are associated with the MI task, the proposed

method is able to extract separately the components by the use of the filterbank.

Moreover, collecting EEG signals takes a long time and small sample prob-

lem in the parameter learning can happen. It causes overfittings and ill-posed

problems. To address the problem, we propose regularizations for optimization
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problems of the spatial filters. At first, we make an assumption that the electrodes

that are located close to each other observe an electric activity of the same neu-

rons. Under the assumption, the proposed regularizations work in such a way that

the weight coefficients or the weighted signals for the nearby sensors take similar

values in the optimization problems. By adding spatial information of an electrode

arrangement as a prior information, the robust coefficients of the spatial filter can

be found.

Experimental analysis for the proposed methods is conducted with artificial

signals. Moreover, we show the EEG classification experiments of the MI tasks.

The results show the proposed methods improve accuracy of the classification.
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Chapter 1

Introduction

1.1 Background

Decording brain activity from brain signal is an important and challenging tech-

nology. The applications of the technology are detection of diseases [1,2], design

of an interface [3] and research for brain function [4–7], etc. An interface us-

ing brain signal is called a brain machine interface (BMI). BMI is an interface

connecting a human brain and an external device. Especially, BMIs to send com-

mands to the device is called output-type BMIs. A brain activity that is evoked

by certain tasks is allocated to an output of the interface. A user of the interface

performs the allocated tasks to generate the output. The tasks inducing the brain

activities are not limited to just tasks with muscular movements. Certain mental

tasks such as turning attention to external stimuli and imagination of something

can be used as the tasks for BMIs. Therefore BMIs realize non-muscular com-

munication and control channel for conveying messages and commands to the

external world [3, 8, 9].

BMI is a challenging technology of nueroscience, signal processing, and pat-
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tern recognition. From the neuroscience point of view, they explore mental tasks

and responses to stimuli that can be observed in brain signals. People who are in

signal processing and pattern recognition societies are interested in how to extract

the features evoked by the tasks from the observed signals and how to classify the

extracted features to the task. Above all, this study mainly tackles problems of

how to extract features associated to the tasks.

For acquisition of the brain signals in BMI, there are invasive and noninvasive

methods [10]. Electrocorticogram (ECoG), electrosubcorticogram (ESCoG), and

electroventriculogram (EVG) are typical invasive measurement methods. They

need surgeries for installing electrodes on a cortex or a cerebral ventricle and

measure electrical activities of brain neurons. The invasive methods can measure

the brain activities with noise much less than that in the noninvasive methods.

BMIs with the invasive measurements have realized without muscle movements

a control of a lever by a rat [11], a control of a robot arm by a monkey [12], and

a control of a computer cursor by a patient suffering from motor disorders [13].

On the other hand, the noninvasive methods do not require such medical surg-

eries. The noninvasive methods are considered that they impose a less load on

subject and are more practical methods for realizing BMIs than the invasive meth-

ods [14]. Noninvasively measured data such as electroencephalogram (EEG) [15],

magnetoencephalogram (MEG) [16], and functional magnetic resonance imag-

ing (fMRI) [17], and near-infrared spectroscopy [18] are widely used to the BMI

research. The details of these noninvasive methods are shown in Chapter 2.2.

Among them, because of its simplicity and low cost, EEG is practical for use in

engineering applications [19, 20]. Moreover, EEG can achieve higher temporal

resolution than the other invasive methods [8]. In this study, we use EEG as the
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measurement method for BMI. Although EEG is considered to be practical for

BMI, decrease of desired components, high noise, and low spatial resolution are

significant problems. The BMI systems with EEG (EEG-based BMI) such as an

input of letters [21–23] and controls of an object in a monitor [24, 25], a wheel

chair [26], and a robot [19, 27] have been developed.

BMIs can be categorized by the tasks which a subject performs. The frame-

works composed of the tasks and feedbacks to the subject are often called paradigms.

Typical BMI paradigms are perception of random-displayed stimuli, gazing at

flicker stimuli, and imagination of muscle movements. The details of these paradigms

are shown in Chapter 2.3. This paradigm of imagination of muscle movements is

called the motor-imagery (MI) paradigm and the BMI using MI is called MI-

based BMI (MI-BMI) [3, 9]. In MI-BMI, an observed brain signal is classified

into classes corresponding to a body part which a subject imagines movement of.

For example, the right hand, the left hand, feet, and tongue of the MI tasks are

widely used for realizing BMI [28, 29].

This study addresses problems for feature extraction in the BMI using the

paradigm of imagination of muscle movements. The reasons why we focus on the

MI paradigm are as follows. As merits as an interface, unlike the paradigms that

make use of responses to some stimuli, MI-BMIs do not need stimuli because a

subject performs the MI tasks voluntarily. Moreover, the subject needs at least a

perception out of visual, auditory, tactile, olfactory, and gustatory perceptions in

order to respond to the stimuli. On the other hand, the MI paradigm can be used

by patients suffering from sense disorders and even for locked-in patients. Re-

cently, some researches explore a new field of application of MI-BMI in medical

rehabilitation area [30, 31]. The rehabilitation of the application aims to recover
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motor function in patients who have damages in brain regions that play a role in

the motor function. Typically, the rehabilitation asks the patient to try to move its

paralyzed limb. Then, the motor function can be gradually recovered as the patient

tries it repeatedly. The recovery makes use of neuroplasticity that is a property of

changes in neural pathways and synapses which are resulted by stimuli such as

behavior, environment and neural processes [32]. Thanks to neuroplasticity, the

disabled motor function is recovered in the different region from the damaged re-

gion. In the process of trying the movement, it has been suggested that physical

feedbacks to the paralyzed part promote neuroplasticity [33]. For instance as the

feedbacks, a robot gives force to the paralyzed part and moves the part. Some

researches suggest that the use of BMI for the control of the feedbacks is effective

for promotion of neuroplasticity [31,34,35]. BMI is used for detecting patterns of

MI or an intention of movements in a brain signal and makes the feedbacks when

it the patterns is detected. The feature patterns in the brain signal according to MI

and the intention of movement are thought to be similar [36]. As we mentioned,

the application areas of MI-BMI are widespread, and classification of brain states

of MIs is an important issue in these applications.

Different MI tasks (e.g. imaginations of movements in a left hand, a right

hand, feet, and a tongue) evoke different feature patterns in EEG [3, 37]. Espe-

cially, the change in energy of a certain frequency band called mu band [8] is well

known as a feature related to MI. The mu band is the name of the frequency band

of 10–15 Hz in EEG and MEG signals and there are some bands named such as

alpha, beta, and theta bands (waves) in brain science [38]. The energy in the mu

band observed in a motor cortex decreases while a subject performs the MI tasks.

This decrease of the energy is called event related desynchronization (ERD) and
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the location observing ERD depends on the body part of which a subject imag-

ines the movement [8, 39–41]. Extraction of these changes from the measured

EEG signals enables us to classify the EEG signal associated with the different

MI tasks.

1.2 Problems

For classification of some MI tasks, we have to extract the features in the presence

of measurement noise and spontaneous components which are related to the other

brain activities because the features, noise and the other components are mixed

in the observed EEG signals. For the extraction of the features, signal processing

techniques such as bandpass filtering and spatial weighting are used [3]. For the

processing, finding the parameters such as coefficients of the filters and weights

that accurately extract the related components is a crucial issue. The knowledges

in neuroscience have been often used to design the parameters. However, the opti-

mum parameters in classification are highly dependent on users and measurement

environments [42]. In order to determine the parameters, data-driven techniques

that exploit observed data are widely used [3, 8]. The observed data essentially

include class labels corresponding to the tasks. The dataset of the data with the

class labels refers to a learning dataset in machine learning literacy. The data-

driven techniques try to find the parameters that extract discriminative features as

much as possible. To this end, it would be simple to apply cross validation (CV)

for searching these parameters that give the best classification accuracy for the

learning dataset among several candidates of the parameters. However, the clas-

sification performance depends on the choice of the candidates and the selected

filter is not always “optimal.” Moreover, a large size of the candiate set leads to
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high computational cost.

As the data-driven methods, common spatial pattern (CSP) method is widely

used for design of the spatial weights in MI-BMIs. The method finds the spatial

weights by using the observed signals [3, 42, 43] in such a way that the variances

of the signal extracted by the linear combination of a multichannel signal and the

spatial weights differ as much as possible between two classes. The standard CSP

method has been extended to methods to estimate the other parameters such as the

frequency bands [44–49], and methods to select the CSP features extracted with

various parameters [50, 51]. The feature extraction procedures in these methods

can be modeled by a model applying spatial weights, frequency filters, and time

windows to EEG signals.

The study focuses on three problems regarding to the design of the parameters

in the model;

1) simultaneous design of spatial weights, frequency filters, and time windows

is impossible,

2) extraction of multiple feature components modeled with different spatial

patterns, frequency patterns, and time patterns for each other is impossible,

3) overfitting of the designed parameters for the spatial weights often happens.

1.3 Solutions

We propose a method to solve the problems 1) and 2) in Chapter 4 and a method

to solve the problem 3) in Chapter 5.

Chapter 4 proposes common spatio-time-frequency patterns (CSTFP). This

method is one of the extensions of CSP. The different points from the existing
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methods, which design the spatial weights and frequency filters, are that CSTFP

can simultaneously design sets of the spatial filter, the frequency filter, and the

time window. The reasons of the importance of design of the sets of the filters are

described in the following two paragraphs.

The first reason relates to the problem 1). A kind of BMIs is implemented

based on cues which a user follows. In this BMI, the user begins to perform a

task when the cue is given. Therefore, the time when the user begins to perform

the task is known. However, when the brain activity associated to the task occurs

is unknown. The time windows working to remove samples that do not contain

the brain activity will not match the period when the cues are showed. For in-

stance, the samples for a few hundreds milliseconds after the cues are assumed

not to be used to extract the features in previous works [46, 50, 52, 53], which

heuristically determined the time window. Contrary to these works, this study hy-

pothesizes that an optimal observation period in classification depends on users.

For example, reaction time defined as the elapsed time between the presentation

of a sensory stimulus and the subsequent behavioral response is strongly associ-

ated with age [54]. The reaction time can be related to the time to response to the

cues. Therefore, the time window should also be designed by using the observed

signals or data-driven.

The second reason relates to the problem 2). It is suggested that the feature

components evoked by performing the MI tasks are observed in the mu and beta

bands [37]. Therefore, a bandpass filter with a passband of 7–30 Hz including

the mu and beta bands is widely used in feature extraction in MI-BMI [42, 43,

55]. These two components in the mu and beta bands are considered to have

different frequency bands, different spatial patterns, and different time patterns [3,
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9]. Because of the suggestion about the mu and beta bands, we suggest that the

features associated to the MI task are in various patterns. Therefore, multiple filter

sets that separately extract each patterns are needed.

Moreover, the CSTFP method does not have the following problems that the

existing methods have. Common spatio-spectral pattern (CSSP) [44] and common

sparse spectral spatial pattern (CSSSP) [45] are the methods that obtain coeffi-

cients of a finite impulse response (FIR) filter by applying CSP to the combination

of observed signals with the time-delayed signals. However, CSSP provides very

poor frequency selectivity due to the limitation of a single delay. Unlike CSSP that

provides different spectral patterns for each channel, CSSSP can provide a com-

mon spectral pattern for all channels. However, CSSSP needs the computationally

expensive optimization because the optimization problem for the filter involves a

sparsity cost and an extensive parameter tuning is needed. Spectrally weighted

CSP (SPEC-CSP) [46] and iterative spatio-spectral patterns learning (ISSPL) [56]

use iterative procedures for optimizing spatial weights and a filter, where the spa-

tial weights are optimized by CSP and the filter parameterized by weights for the

spectrum is found by an optimization problem based on other criteria. These two

optimization problems are alternately solved, however this alternating iteration

is not guaranteed to be converged, because the cost functions for these two prob-

lems are different. Recently proposed sub-band CSP (SBCSP) [57] and filter bank

CSP (FBCSP) [50] are based on subband decomposition with multiple filters that

have different passbands. As reported in BCI competition III [29] and IV, FBCSP

achieves a high classification accuracy. In these methods, EEG signals are de-

composed into multiple frequency components and CSP is separately applied for

each frequency component. By using multiple filters such as these methods, fea-
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tures associated to brain activities such as mu and beta rhythms can be separately

extracted. The result of FBCSP suggests that feature extraction using subband de-

composition is an effective method to increase classification accuracy of MI-BCI.

The methods using frequency decomposition need selection of feature values to

achieve accurate classification. In order to select the feature values, the methods

based on mutual information have been proposed [50, 51]. The other methods

for selecting efficient filters also proposed in [58] and [59]. In these methods,

the filters in the filter bank have to be designed in advance and the fixed filter

bank is independent of dataset. Although the parameters for the filters such as the

passbands that accurately extract the feature components can change by users and

measurement environments, the method using the fixed filter bank cannot use the

filters optimized for a specific user.

Chapter 5 proposes a regularization method to prevent overfitting in the opti-

mization of the spatial weights. The data-driven methods for design of the spatial

weights like CSP need a large amount of the learning data. Collecting enough

amount of the learning data takes long time and a subject will feel fatigue. There-

fore, the optimization can be ill-posed and the optimized parameters can be over-

fitting because of limited numbers of the learning data. To prevent overfitting

or to solve an ill-posed problem in signal processing and machine learning for

learning parameters, regularization is widely used [60, 61]. The regularization

for an optimization problem is to add to an original cost function a penalty term

which represents additional information such as smoothness or bounds of the vec-

tor norm of parameters to be optimized. In this way, the regularization can help

design more robust spatial weights against ill-posed problems [53]. We propose

a regularization to add information of an EEG electrode arrangement to an opti-



10 CHAPTER 1. INTRODUCTION

mization problem. The regularization is proposed based on the assumption: the

signals measured by the electrodes that are located near each other (the nearby

sensors) are similar and also the observed components are similar. To describe the

assumption, consider a measurement device of EEG where electrodes installed on

scalp observe faint electrical difference. The EEG signal reflects the summation

of the synchronous activity of thousands or millions of neurons [9,62]. Therefore,

the nearby sensors likely observe activities which are induced from the same neu-

rons. For the reason, the spatial filters such as the Laplacian filter that averages

the signals observed in the nearby sensors are often used for improving SNR in

EEG signal processing [8]. Based on the assumption, we propose the regulariza-

tion that works in the optimization problems such that the signals weighted by

each coefficient of the spatial weights are similar to each other if these signals are

observed in the nearby sensors.

The CSTFP method and the regularization are evaluated in their performances

by experiments using artificial signals and BMI datasets in each chapter.

1.4 Organization of Thesis

This thesis is divided into six chapters. In Chapter 1, the background regarding

this work, the problems, the ideas of the proposed method is discussed. Chapter 2

introduces the foundation of BMIs. Chapter 3 describes feature components in

EEG associated with the MI tasks and some methods to extract these features.

We introduce the CSTFP method and its experimental results in Chapter 4. The

regularization with information of sensor arrangement is introduced Chapter 5.

The study is concluded in Chapter 6.
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1.5 List of Symbols

• R: the set of all real numbers

• C: the set of all complex numbers

• Z: the set of all integers

• An italic letter: a scalar, e.g. x and X

• An italic bold lower-case letter: a scalar, e.g. x

• [·]i: the ith entry of a vector

• An italic bold upper-case letter: a matrix. e.g. X

• [·]i, j: the ith row and the jthe column of a matrix

• ·T : transposes for a vector and a matrix, e.g. xT and XT

• | · |: the absolute value of a scalar, e.g. |x|

• ∥ · ∥p: the p-norm of a vector defined as ∥x∥p =
(∑N

i=1 |[x]i|p
)1/p

• ∥ · ∥: the l2-norm of a vector

• Span{· · · }: the subspace spanned by vectors

• ⊕: an operator to give the direct sum of two subspaces

• ·⊥: the ortognal complement of a subspace

• δi j: the Kronecker delta defined as 1 for i = j and 0 otherwise

• a mod b: an operator to take a residue of dividing a by b.
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• ℜ: an operator to take a real part of a complex number.

• N(m,σ2): a Gaussian distribution with a mean, m, and a variance, σ2

• U(a, b): a uniform distribution whose minimum and maximum values are

denoted by a and b, respectively



Chapter 2

EEG-Based Brain Machine

Interfaces

In this chapter, we describe EEG-based brain machine interfaces. We describe

fundamental structures of BMI in Sec. 2.1. Section 2.2 lists some methods for

measuring brain activities of human. Section 2.3 shows principal paradigms for

EEG-based BMI.

2.1 Fundamentals of Brain Machine Interfaces

BMIs are interfaces directly connecting brains and external worlds without muscle

movements of hands, feet, and a tongue. Figure 2.1 shows a fundamental structure

of BMI [9,14]. As shown in the figure, a procedure of BMI system can be divided

into the following four steps.

Step 1 A subject performs certain tasks to induce brain activity in its brain. The

certain tasks are mental tasks such as imagination of something or turning

attention to a visual/auditory/tactile stimulus.

13
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Figure 2.1: A fundamental structure of BMI

Step 2 Brain signal is acquired by measurement systems. Because subsequent

signal processing is applied to the digitized signal, the acquired signals are

converted to the digital signal by an A/D converter after amplification and

filtering are applied.

Step 3 Feature components are extracted from the signal. The signal mixed with

components associated to various brain activities and noise are observed. In

this step, we remove the noise and extract the components that are associ-

ated with the task and are important for the estimation of the tasks.

Both of classical and statistical signal processing techniques (e.g. discrete

Fourier transform, FIR/IIR filtering, averaging, principal component analy-

sis (PCA), regression analysis, and independent component analysis (ICA)) [63,

64] are used for extracting the feature components. Depending on the tasks,
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the feature components to be extracted are different. Therefore, we should

adopt suitable techniques for this step [8, 65].

Step 4 The task that the subject performs is estimated by recognition of the ex-

tracted feature components. The feature components extracted in Step 3

are given as a vector. Hence we can use pattern recognition techniques that

are used in the research areas such as speech recognitions and image recog-

nition. Classifiers with machine learning (e.g. linear discriminant analy-

sis, support vector machine, artificial neural network, and Bayesian classi-

fier) [61, 66–68] are widely used for recognizing the tasks with the feature

value (vector).

Through these steps, we obtain the task that the subject is performing. The rec-

ognized task is used for analysing the subject’s emotions and brain state or is

converted to a command to control the device. The BMI system used for inputting

the device commands is called an output type of BMI. Because the output type of

BMI does not need any muscle movements to send the commands to the devices,

the output type of BMI is expected as a communication tool for patients suffer-

ing from motor disorders caused by amyotrophic lateral sclerosis, brain stroke,

brian or spinal cord injury, cerebral palsy, muscular dystrophies, multiple scle-

rosis, and numerous other diseases [9]. BMI is also expected as an interface for

virtual reality systems and video games [69]. The application of BMIs spreads to

the area of rehabilitation for patients suffering from motor disorders caused by a

stroke [30, 31, 33, 70].
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2.2 Methods for Measuring Brain Activity

Neurons composing a brain generate spikes (change of electrical potential at short-

term) when they accept input stimulus and convey information to the other neu-

rons [71]. We capture this kind of changes of electrical potentials and/or blood

flows by measurement devices. The information of these changes is used for es-

timation of brain state. In this section, we introduce some of the measurement

devices. In this study, we focus on EEG with scalp electrodes. This section also

shows reasons why we focus on this devices.

2.2.1 Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) is one of neuroimaging proce-

dures using magnetic resonance imaging (MRI) [72]. When neuron activates,

oxygen is consumed and the blood flow increases in the capillary around the neu-

ron [73]. FMRI measures brain activity in the brain or spinal cord of humans or

other animals by detecting associated changes in the blood flow.

FMRI is able to obtain high spatial resolution images. However, the change of

blood flow is slower than neuron activations and the temporal resolution is poor.

2.2.2 Near-Infrared Spectroscopy

Near-infrared spectroscopy (NIRS) is a spectroscopic method [74]. NIRS uses

the near-infrared spectrum (about 800 nm) that reaches inside of a skull through a

scalp and a skull. By measuring the reflected light, we can observe the change of

amount of hemoglobin and information of exchange of oxygen in the brain.
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2.2.3 Magnetoencephalography

Magnetoencephalography (MEG) is a imaging technique that uses superconduct-

ing quantum interference device (SQUID) [75]. SQUID measures magnetic field

generated by electrical activities of brain neurons.

2.2.4 Electroencephalography

Electroencephalography (EEG) is a measurement device observing electrical ac-

tivity of neuron by using electrodes [76]. The electrical activity that is observed

by an electrode is the summation of activities of the group of neurons around the

electrode. The electrodes are located on scalp, on cerebral cortex, under cere-

bral cortex, and in ventricle and the measurement methods are called scalp EEG,

electrocorticography (ECoG), electrosubcorticography (ESCoG), and Electroven-

triculography (EVG), respectively. The scalp EEG is an noninvasive measurement

method. ECoG, ESCoG, and EVG are invasive measurement methods. This study

focuses on the scalp EEG and addresses problems in signal processing for the sig-

nal observed by the scalp EEG systems. In the remaining of the thesis, we call the

scalp EEG simply EEG unless otherwise specified.

In the EEG measurement, the electrodes are installed on the scalp by using

conductivity pastes and special caps. For the BMI application, the EEG signal

is usually observed by multiple electrodes [9, 14, 37]．In the case of the multi-

electrode measurement, International 10-20 [62], Extended 10-20 [77], Interna-

tional 10-10 [78], and 10-5 [79, 80] methods have stood as the de-fact standard

of the electrode arrangement. In these systems, locations on a head surface are

described by relative distances between cranial landmarks over the head surface.

For an example, we show how to decide the locations of the electrodes according
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Figure 2.2: The electrode arrangement of the International 10-20 method and the

International 10-10 method. The circles show the electrodes defined by the Inter-

national 10-20 method. The circles and the crosses show the electrodes defined

by the International 10-10 method.

to the International 10-20 method. The landmarks are a nasal point located in the

middle point of eyes, the height of eyes, and a inion which is the most prominent

point at the back of the head [62]. We drew the line connecting these landmarks

along the head surface and moreover make marks that divide the line into short

lines of 10% and 20% length of the line. Each electrode point is defined at the

intersection point of the lines connecting these marks along the head surface. An

examples of the electrode arrangement are shown in Fig. 2.2.

The EEG systems record the electrical potential difference between a two elec-

trodes [62]. Referential recording is a method recording the electrical potential

difference between a target electrode and a reference electrode and the reference
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electrodes are common to all electrodes. Earlobes that are considered to be elec-

trically inactive are widely used as the reference electrode. In contrast, bipolar

recording records the electrical potential difference between electrodes located on

head surface.

The EEG system can be more compact than the system of fMRI, NIRS, and

MRI. Temporal resolution of EEG is higher than fMRI and NIRS [3]. However, it

is difficult to make the electrodes for EEG smaller and spatial resolution of EEG

is very low comparing with other devices. Moreover, the high frequency compo-

nent of electrical activity of neuron decreases in the observed signal because the

barriers such as a skull work as a lowpass filter. Additionally, noise caused by

poor contacting of the electrode, muscle movements (EMG; electromyography)

and eye movements (EOG; electrooculography) contaminates the signal.

The tasks that induce discriminative features in the scalp EEG signal and are

available for BMI are limited. The typical tasks for BMI are;

• concentration and meditation,

• perception of random-displayed stimuli,

• gazing at flickering stimulus,

• imagination of muscle movement.

The details of these BMIs are shown in Sec. 2.3.
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2.3 Variety of EEG-based Brain Machine Interfaces

2.3.1 Perception of Random-Displayed Stimuli

BMI using perception induces a brain activity called event-related potential (ERP)

in a brain by perception to a stimulus. This type of BMIs is widely studied for

letter input [3]. The BMI has achieved the input speed of around 1.5 letters per

minute [23, 81, 82].

ERPs are electrical changes in EEG signal and they occur when a human per-

ceives something. P300 is one of the ERPs. P300 is observed as a positive change

of potential after 300 ms from the perception of stimulus [83]. Visual, auditory,

tactile, olfactory, and gustatory stimuli are available for inducing P300. An ex-

ample of the waveform of P300 is shown in Fig. 2.3. We use the dataset, Dataset

II that is an open data in BCI Competition III [28, 84, 85]. The signal labeled

“Targets” is the averaged signal observed in the period 0–1 secs after displaying

a stimulus when the subject perceived the stimulus. The signal labeled “Non-

Targets” is the averaged signal observed in the period 0–1 sec after displaying a

stimulus when the subject does not perceived the stimulus. We can observe the

difference of the potentials between “Targets” and “NonTargets” in the period of

0.2–0.4 sec.

In particular, the task called oddball paradigm can induce high potential of

P300 [86, 87]. In the oddball paradigm, the subject is asked to react either by

counting or by button pressing incidences of target stimuli that are hidden as rare

occurrences amongst a series of more common stimuli, that often require no re-

sponse. As BMI with the oddball paradigm, BMIs making input of letters have

been proposed [3, 88–90]. This kind of BMIs is called P300-spellers. As an
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Figure 2.3: The waveform of P300. The signals averaged over 85 trials. “Targets”

is the observed signal with the subject’s perception after displaying a stimulus.

“NonTargets” is the observed signal without the subject’s perception.
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Figure 2.4: An Interface of a BMI system making a telephone call.

example for a BMI using the oddball paradigm, we show an interface of a BMI

system making a telephone call. The interface to be presented to a user by a mon-

itor is Fig. 2.4. Each row and line flashes during 50–500 ms in random order and

the interval between successive flashes is 500 to 1000 ms [89]. The procedure for

displaying flash stimuli is illustrated in Fig. 2.5. The user gazes at a target symbol

in the interface and counts incidences of the flash of the target symbol. Because

P300 happens after 300 ms of the flash of the target, BMI detects whether P300

happens or not for each flash. The BMI decides which symbol the user wants to

input.

For detection of P300, recording some trials to input one symbol is often

needed due to low signal to noise ratio [88]. Averaging over some trials, low-

pass filtering, stepwise linear discriminant analysis (SWLDA) [23, 91, 92] based

on linear discriminant analysis (LDA) [61, 93] are used as signal processing for

this type of the BMIs.
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Figure 2.5: The procedure for the stimuli in the telephone call BMI. According

to the order indicated by the arrows, each row and line flashes.

2.3.2 Gazing at Flicker Stimuli

BMIs using flicker stimuli is an interface where a user inputs a command by gaz-

ing at a stimulus flickering at flash frequency of 3–70 Hz [94–96]. This type of

BMI does not realize many number of the commands, but achieves higher input

speed [3, 14]. However, the flicker stimuli can cause attacks of epilepsy and you

should be careful for use [97, 98].

The BMI systems use light emitting diodes (LEDs) [99] or monitors for dis-

playing the flicker stimuli [100]. When the subject gazes at the stimuli flickering

at 3–70 Hz, steady-state visually evoked potential (SSVEP) is observed in an EEG

signal recorded at a visual cortex [98]. Figure 2.6 shows the power spectra of the

signals observed when the subject had gazed at the stimuli flickering at 8 Hz for
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15 seconds and when the subject had not gazed at it. When the subject gazes at the

stimulus, the power spectrum has a peak at 8 Hz. Additionally, there are the other

steady state evoked potentials evoked by turning attention to the repeat of a short-

term stimulus such as a flicker. The repeat of tactile [101] and auditory [102,103]

stimuli can evoke such potentials.

BMI paradigms using SSVEP are as follows. As flicker stimuli, we arrange

some checkerboards as in Fig. 2.7 on a monitor. We make monochrome inversion

(Fig. 2.8) in the checkerboards at different frequencies for each checkerboard.

When the user gazes at the left-top stimulus in Fig. 2.7, SSVEP of F1 Hz happens

in a recorded EEG signal. By estimating the frequency of SSVEP, BMI decides

the stimulus which the user gazes at. Taking a simple way, we can assign the

commands to each flicker stimulus and design BMI having six commands with an

interface of Fig. 2.7.

The SSVEP-based BMIs have following problems. First, the power of SSVEP

is very weak when the flicker frequency is more than 25 Hz [104]. Second, SSVEP

of harmonics frequency of a gazed stimulus are also evoked. Therefore, the use

of harmonics frequency of a stimulus as the other stimulus frequency can let clas-

sification accuracy decrease [100, 105]. Third, in the case of the use of a monitor

for displaying the stimuli, available flicker frequencies depend on the refresh rate

of the monitor. Due to the above reasons, it is difficult to realize many commands.

To detect SSVEP frequency, discrete Fourier transform can be used. And,

canonical correlation analysis (CCA) [106,107] is also widely used for processing

for multi-channel EEG signal [108].
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Figure 2.6: The power spectrum of the signals observed when the subject gazes

at a flicker stimulus for 15 seconds.
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Figure 2.7: An interface for SSVEP-based BMI. Each checkerboard makes

monochrome inversion at different frequency.

2.3.3 Imagination of Muscle Movements

BMIs using imagination of muscle movements is an interface where a user inputs

a command by imaging movement (motor imagery) of body parts such as hands,

feet, and tongue. [3]. This type of BMIs is called the motor-imagery based BMI

(MI-BMI). As an example of the MI-BMIs, a task of the motor imagery of right

hand and a task of the imagination of the motor imagery of left hand are the tasks

to be classified from brain signals.

The tasks of the motor imagery decrease the energy in the certain bands called

mu (8–15 Hz) and beta (10–30 Hz) bands in EEG signals observed by the elec-
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Figure 2.8: Monochrome inversion in a checkerboard.

trodes located on (sensory) motor motor cortices. The decrease of the energy

is called event related desynchronization (ERD) [8, 39]. Moreover, the location

observing ERD depends on the body part of which a subject imagines the move-

ment [39–41]. Therefore, we can estimate which body part the subject imagines

the movement of from EEG signals by detecting the location where ERD hap-

pens. ERD can be observed in not even healthy subject and paralyzed patients.

ERD is induced by motor imagery tasks performed by healthy subjects and also

paralyzed patients [109]. An example of ERD we can observe in EEG signals is

shown in Fig. 2.9. The EEG signals were recorded while a subject performed the

tasks of motor imagery of left and right hands [110]. After the recording, the EEG

signals that is bandpass filtered with 8–30 Hz. Then these squared signals shown

in Fig. 2.9 are averaged over the 100 trials for each motor imagery task of the left

or right hand and normalized by a base energy which is averaged over squared

signals observed before performing motor imagery tasks. The symbol 0 on the

horizontal axis is the time when the subject started performing the tasks. We can

observe a decrease in the energy while the subject performs the tasks.

One of the merits of MI-BMI against the BMIs using perception or flicker

stimuli is that an instrument for displaying stimuli is unnecessary. Moreover, it
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163202F-PE (CONTEC). A set of EEG signals for classi-
fication consists of “left” class and “right” class for each of
100 trials. A one trial signal in this set was the observed
signal after 1s from the visual stimulus. T (shown in Fig. 1)
denotes the number of samples in this range (data length).

B. Feature values

For classification, we should extract feature values corre-
sponding to each imaginary task of the subject. We tried to
extract rhythmically oscillating components such as mu and
beta rhythm by using the following methods.

1) Band-pass signal: The band-pass signal, X f1− f2 is the
observed signals to which FIR band-pass filter in a f1− f2Hz
frequency band was applied, that is, X f1− f2 ∈ R

M×N as
[X f1− f2 ]ik = x′i [k] (k = 0, . . . ,N − 1) where x′i (i = 1, . . . ,M)
is the band-pass signal of the ith channel and N is the data
length. The order of the FIR filter was 100 in this experiment.

2) Fourier spectra of observed signals: The Fourier spec-
trum, fi[k] was obtained by discrete Fourier transform (DFT)
of the ith channel signal. We define F as [F]ik = fi[k]. Then
F f1− f2 ∈ R

M×N f is obtained from F of the frequency range
of f1 − f2Hz. Nf is the length of the spectrum and depends
on the sampling frequency and the data length.

3) Correlation coefficient by RCE: ci is correlation coeffi-
cient between the ith channel signal and the signal extracted
using RCE. Then correlation coefficient, c between all chan-
nel signals, X and the extracted signal, x̂ can be described
as c = Xx̂T , where c = [c1, . . . , cM]T .

C. Classification methods

1) TM: The TM method classifies input data by evaluating
the distance between the input data and templates belonging
to a given class. In this paper, we used the mean value of
learning data as the templates. The Euclidean distance was
used as the definition of the distance.

2) k-NN: The k-NN method classifies input data by eval-
uating the distance between the input data and all learning
data. The class of the input data determined as the majority
of the k learning data that are nearest from to input data. In
this paper, we used the Euclidean distance, and k was 5.

3) FDA: FDA constructs a linear dimension reduction
from the input vector, x to a new feature value, y. A weight
vector for reduction of linear dimensions was obtained by
maximizing the inter-cluster distance between each class and
minimizing the intra-cluster distance within a given class
in the new dimension space. In this paper, input data was
classified by evaluation of the distance between the threshold
and the projected input data. We used the mean value of
learning data projected onto the new dimension space as the
thresholds.

4) CSP: CSP finds the direction which the observed sig-
nal should be projected onto so that the differences between
any two classes are maximized (i.e. the variance of one class
is minimized while at the same time, the variance of the other
class is maximized) [3]. The directions are given by a weight
vector whose rows give the weight of the channels. Useful
features can be extracted from the EEG signal and then
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Fig. 3. ERD during imagined left (top) and right (bottom) hand movement
in S1. The base of the power was the average of the power in “relax” task.
The ERD were the average over 100 trials.

TABLE I

THE CLASSIFICATION ACCURACY FOR EACH METHOD. THE DATA LENGTH WAS 1S AND

THE ACCURACY RATE IS GIVEN BY USING 5-FOLD CROSS VALIDATION. (SBJ; SUBJECT)

Accuracy [%]
Sbj Feature value TM 5-NN FDA CSP
S1 Band-pass X12−15 51.0 64.5 52.2 82.5

Fourier spectra F12−15 67.1 62.9 77.3 50.5
RCE (12–15Hz) c 81.1 82.8 83.1

S2 Band-pass X12−15 50.5 50.9 51.9 70.1
Fourier spectra F12−15 63.2 58.6 68.1 51.1

RCE (12–15Hz) c 71.8 67.1 74.9

used for classification. In this paper, we extracted two spatial
filters, wp (p = 1, 2) from the learning data. wp minimizes the
variance of the extracted signal corresponding to each class.
Thus we can obtained two extracted signals corresponding
to wp respectively from the input data. By comparing the
variances between each of the extracted signals, the class of
the input data can be determined.

IV. RESULTS AND DISCUSSION

A. Brain activity during hand movement imagery

Figure 3 shows event-related desynchronization (ERD) in
two electrodes (CP3 and CP4). The arrow was presented and
the subject started the imagination of one hand movement at
0s. EEG signals were filtered to 8-26Hz before averaging. We
can observe a decrease in power while the subject imagines
the hand movement. In “right” task, the degree of this
decrease in each electrode was different. This result suggests
that the EEG signal during hand movement imagery can be
classified by using the amplitude of the specific frequency
range as the feature value.

B. Classification result

Table I shows the classification accuracy of two subjects
for each set of feature values and each classification method.
The data length of each trial was 1s and the accuracy rate
was given by using 5-fold cross validation. We chose 12–
15Hz as the frequency band of interest. This band was

Figure 2.9: ERD by the motor imagery tasks of left (top) and right (bottom)

hands.
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has been reported recently that the detection of the motor imagery tasks and a

feedback is useful for rehabilitation for patients who suffer from motor disorders

caused by brain damages [30, 31, 33, 70]. MI-BMI will be utilized in the reha-

bilitation to recover of the motor functions as follows. One of the rehabilitation

procedures for the recovery of the motor functions is to make a subject perform

movements of a disabled body part by a cue and give a visual or physical feed-

back [30]. The rehabilitation takes advantage of the plasticity of the brain. The

plasticity of the brain is an intrinsic property. The plasticity enables the nervous

system to adapt the environmental pressures, physiologic changes, and experi-

ences [111]. The coincident events of the intention of the movement that the sub-

ject has and the corresponding feedback to the subject are supposed to promote

the plasticity of the brain. Because of the plasticity of the brain, the other parts of

the brain with no damage take over the functions disabled by the damages. In the

rehabilitation, to generate the feedback coincidentally with intention is considered

to be significant. In the general procedure of the rehabilitation illustrated in above,

the cues control generating the intention and the feedback. Using the MI-BMIs for

the rehabilitation, the feedback generation is controlled by BMI. MI-BMI enable

the rehabilitation system to detect the intention of the movements and generate

the feedback at an appropriate time. The some researches have suggested that

the rehabilitation with the MI-BMIs can promote the plasticity of the brain more

efficiently than the conventional system based on the cue [30, 31, 33, 70].





Chapter 3

Feature Extraction for

Motor-Imagery EEG

In this chapter, we illustrate feature patterns observed in EEG associated with

the MI tasks in more detail than Sec. 2.3.3. Next, we show some of methods

to extract these features. Especially, we show the CSP method [42, 43] which

is a well-known method for the feature extraction and classification in two class

MI-BMI and its variants [44–46, 50].

3.1 Features Associated with Motor-Imagery Task

As we show in Sec. 2.3.3, the features of the MI tasks are observed as the energy

changes of certain frequency bands. Moreover, spatial patterns of the changes

depend on the kind of the MI tasks [8]. For example, it is said that the MI of a left

hand evokes energy changes in the right side of a motor cortex. The MI of a right

hand evokes energy changes in the left side of a motor cortex.

The differences of the spatial pattern of the features are caused by differences

31
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Figure 3.1: Sensory and motor cortex and associated body regions

of brain regions that work for each muscle. Figure 3.1 illustrates which region

works for a body region [112].

As shown in Fig. 2.9, the differences in ERD between the different MI tasks

are observed. By finding in spatial patterns of ERD, we can associate an observed

EEG signal with the MI tasks which a subject performs.

3.2 Discrete Fourier Transform

The features of the MI are observed in frequency domain. Therefore, the signal

transformed to the frequency domain can be used as useful features. Discrete

Fourier transform (DFT) is the simplest way to obtain the signal in frequency
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domain. Let x ∈ RN be a signal observed by an electrode, where N is the number

of discrete samples. DFT of x is represented as

[f ] j =

N∑

k=1

[x]k exp
(−2πi( j − 1)(k − 1)

N

)
, j = 1, . . . ,N, (3.1)

where i denotes an imaginary unit defined as i2 = −1.

For BMI use, multichannel EEG measurement systems in which many elec-

trodes located in different places are used are widely used for improving SNR.

Therefore, in case of forming a feature vector with some DFTs, the dimension of

the feature vector is large and it causes some problems such as overfitting and an

ill-posed problem in classification process.

3.3 Common Spatial Pattern

CSP is a spatial filter. In the definition in the study, the spatial filter works as

y =
M∑

m=1

wmxm, (3.2)

where, x is a sample observed in the mth channel at a discrete time, wm is a weight

coefficient for the signal observed in the mth channel, y is the spatial-filtered signal

at the time. The CSP is denoted the vector as w = [w1,w2, . . . ,wM]T .

CSP is found the spatial filter, w ∈ RM, in such a way that the variance of a

signal extracted by linear combination of X is minimized in a class [42, 43]. In

BCI application, we do not directly use X , but use the filtered signal described

as X̂ = H(X) in CSP, where H is a bandpass filter which passes the frequency

components related to brain activity of motor imagery. Denote the components

of X̂ by X̂ = [x̂1, . . . , x̂N], where x̂n ∈ RM and n is the time index. The time
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average of the observed signal is given by

µ =
1
N

N∑

n=1

x̂n. (3.3)

Then, the time variance of the extracted signal of X̂ is given by

σ2(X ,w) =
1
N

N∑

n=1

|wT (x̂n − µ)|2. (3.4)

We assume sets of the learning data, C1 and C2, where Cd contains the signals

belonging to class d, d ∈ {1, 2} is a class label, and C1 ∩ C2 = ∅. CSP finds the

weight vector that minimizes the intra-class variance inCc under the normalization

of samples, where c is a class label. More specifically, for c fixed, CSP finds wc

by solving the following optimization problem [42, 43];

min
w

EX∈Cc[σ
2(X ,w)],

subject to
∑

d=1,2

EX∈Cd [σ2(X ,w)] = 1,
(3.5)

where EX∈Cd [·] denotes the expectation over Cd. Then, (3.5) can be rewritten as

min
w

wTΣcw,

subject to wT (Σ1 +Σ2)w = 1,
(3.6)

where Σd, d = 1, 2, are defined as

Σd = EX∈Cd

⎡
⎢⎢⎢⎢⎢⎣

1
N

N∑

n=1

(x̂n − µ)(x̂n − µ)T

⎤
⎥⎥⎥⎥⎥⎦ . (3.7)

The solution of (3.6) is given by the generalized eigenvector corresponding to the

smallest generalized eigenvalue of the generalized eigenvalue problem described

as

Σcw = λ(Σ1 +Σ2)w. (3.8)
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Although the solution of (3.6) is given by the eigenvector corresponding to

the smallest eigenvalue in (3.8), we can use the other eigenvectors for classifica-

tion [55]. The M eigenvectors can be obtained by solving (3.8) as ŵ1, . . . , ŵM,

where ŵi is the eigenvector corresponding to the ith smallest eigenvalue of (3.8).

We assume that the 2r eigenvectors are used for classification of unlabeled data,

X . Then we obtain the feature vector, y ∈ R2r, from X defined as

y =[σ2(X , ŵ1), . . . ,σ2(X , ŵr),

σ2(X , ŵM−r+1), . . . ,σ2(X , ŵM)]T . (3.9)

For classification, y is an input to a classifier such as linear discriminant analysis

(LDA) [61].

3.4 Common Spatio-Spectral Pattern

CSSP is a method where a weight vector is obtained by applying the combination

of observed signals with time-delayed signals to CSP [44]. Let X ∈ M×N be an

observed signal with M channels and N samples. Let X1 and X2 be the subsignals

included in X . The components of X1 and X2 are defined as [X1]m,n = [X]m,n

and [X2]m,n = [X]m,n+τ, respectively, where m = 1, . . . ,M, n = 1, . . . ,N − τ, τ is

a sample delay, and [·]i, j denotes the entry in ith row and jth column of a matrix.

Then the τ-delay embedded signal is defined as

Xτ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ 2M×(N−τ). (3.10)

CSSP uses Xτ to seek the spatial weight vector.

For classification, CSSP can give the feature vector as follows. We obtain 2M



36 CHAPTER 3. FEATURE EXTRACTION FOR MOTOR-IMAGERY EEG

eigenvectors, ŵi ∈ 2M, i = 1, . . . , 2M, from (3.8) using Xτ. We compose the

feature vector, y ∈ 2r, in a way similar to (3.9).

In CSSP, the weight vector, ŵi, can be regarded as a set of FIR filters cor-

responding to channels in the following way [44]. Let w0 and wτ be the weight

coefficients for the original signal and the delayed signal corresponding to the jth

channel in the ith weight vector given by w0 = ŵi[ j] and wτ = ŵi[ j + M], where

a[i] denotes the entry of a. Then, the set, {w0, 0, . . . , 0︸!!︷︷!!︸
τ−1

,wτ}, is regarded as the

coefficients of the FIR filter.

3.5 Common Sparse Spectral Spatial Pattern

The CSSSP [45] method obtains a weight vector and an FIR filter by using de-

layed signals like CSSP. The main difference between both methods is that CSSSP

achieves design of an FIR filter with order more than 2. When CSSSP designs an

FIR filter with order T , the optimization problem of CSSSP has the optimization

parameters consisting of M spatial weight coefficients and T − 1 coefficients for

the FIR filter. Let b1, . . . , bT be the coefficients of the FIR filter that we want to

design. The optimization problem of CSSSP is

max
b2,...,bT

max
w

wT

⎛
⎜⎜⎜⎜⎜⎜⎝

T−1∑

τ=0

⎛
⎜⎜⎜⎜⎜⎜⎝

T−τ∑

j=1

bjb j+τ

⎞
⎟⎟⎟⎟⎟⎟⎠Στ

c

⎞
⎟⎟⎟⎟⎟⎟⎠w +

C
T
∥b∥1,

subject to wT

⎡
⎢⎢⎢⎢⎢⎢⎣

T−1∑

τ=0

⎧⎪⎪⎨
⎪⎪⎩

T−τ∑

j=1

bjb j+τ

⎫⎪⎪⎬
⎪⎪⎭
(
Στ

1 +Στ
2
)
⎤
⎥⎥⎥⎥⎥⎥⎦w = 1,

(3.11)

where b1 is fixed to 1, b is a coefficient vector defined as b = [b1, . . . , bT ]T , Στ
c is

a correlation matrix between the signal, X , and the τ delayed signal, Xτ, defined

as

Στ
c = EX∈Cc

[
XXT

τ +XτX
T
]
, τ > 0, (3.12)
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and

Σ0
c = EX∈Cc

[
XXT

]
, (3.13)

and C is a non-negative regularization coefficient that affects sparsity of b. Opti-

mization techniques like gradient or line-search methods can be used for solving

(3.11) if T is not too large [45].

3.6 Spectrally Weighted CSP

SPEC-CSP uses an iterative procedure to achieve optimization of both of spatially

weights and filters [46]. A filtered signal of an observed signal, X , can be written

by

X̂ =XFNBF −1
N (3.14)

with the discrete Fourier transform matrix, FN ∈ N×N , defined as

[FN]k,l =
1√
N

e−2π(k−1)(l−1)/N , k, l = 1, . . . ,N, (3.15)

and a filter in frequency domain, B, represented by a diagonal matrix, B =

diag(b1, . . . , bN). In SPEC-CSP, the feature value from X is defined with the

spatial weigh vector, w, and the spectral weight, B, as

v(X ,w,β) = wTXFNBBTFNXTw = wT

⎛
⎜⎜⎜⎜⎜⎝

N∑

k=1

b2
kVk

⎞
⎟⎟⎟⎟⎟⎠w (3.16)

where we define G = XF = [g1, . . . , gN], Vk = gkgT
k , and β = [b2

1, . . . , b
2
N]T .

SPEC-CSP decides 2r weight vectors, ŵi, and 2r filters, βi, by alternately opti-

mizing with CSP for ŵi and the optimization problem based on Fisher’s criterion

for βi, where i = 1, . . . , 2r.

In optimization for ŵi, covariance matrices for each βi are defined as

Σi
d = EX∈Cd

⎡
⎢⎢⎢⎢⎢⎣

N∑

k=1

βk,iVk

⎤
⎥⎥⎥⎥⎥⎦ , d = 1, 2, (3.17)
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where the elements of βi are denoted by βi = [β1,i, . . . , βN,i]T , and Cd is the set of

the learning data belonging to class d. Then we solve the generalized eigenvalue

problem;

Σi
cw = λΣ

i
c̄w, (3.18)

where c is an optional class label such that c ∈ {1, 2} and c̄ is other class label. Let

w̄i
1, . . . , w̄

i
M be the generalized eigenvectors corresponding to generalized eigen-

values, λi
1, . . . , λ

i
M. a and b are chosen as

a = argmin
i=1,...,r

λi
1 (3.19)

and

b = argmax
i=1,...,r

λi
M, (3.20)

and then, the 2r spatial weight vectors are defined as ŵ j = w̄a
j , j = 1, . . . , r and

ŵ j = w̄b
M−2r+ j, j = r + 1, . . . , 2r.

Next, SPEC-CSP formulates the optimization problem for βi as

max
βi

EX∈Cc[si] − EX∈Cc̄[si]√∑
d=1,2 EX∈Cd [|si − EX∈Cd [si]|2]

,

subject to βk,i ≥ 0, ∀k = 1, . . . ,N,
(3.21)

where si is defined as

si =

N∑

k=1

βk,iŵ
T
i Vkŵi. (3.22)

Here, we define

γi
k = EX∈Cc[ŵ

T
i Vkŵi] − EX∈Cc̄[ŵ

T
i Vkŵi] (3.23)

and

ζ i
k =

∑

d=1,2

EX∈Cd [|ŵT
i Vkŵi − EX∈Cd [ŵT

i Vkŵi]|2]. (3.24)
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Because si is linear with respect to βk,i, k = 1, . . . ,N, and we assume that the signal

is a stationary Gaussian process where the frequency components are independent

to each other, the solution of (3.21) is

βk,i ∝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γi
k/ζ

i
k γi

k ≥ 0

0 otherwise.
(3.25)

Because the norm of βi cannot be determined by (3.25), we normalize βi so that

they sum to one.

SPEC-CSP optimizes ŵi and βi by iteration of the optimization problems,

(3.18) and (3.21). After ŵi and βi are obtained, The feature vector, y ∈ 2r from

an observed signal, X , is defined as

y = [v(X , ŵ1,β1), . . . , v(X , ŵ2r,β2r)]T . (3.26)

3.7 Filter Bank Common Spatial Patterns

FBCSP selects some bandpass filters from a filter bank [50]. It comprises four

stages: multiple bandpass filtering, spatial filtering by CSP, feature selection of

the CSP features, and classification.

FBCSP first defines a bank of filters denoted by {H1, . . . ,HNF }. Let X̂ j be the

filtered signal by X̂ j = H j(X). CSP is applied for each X̂ j and spatial weights,

wi
j, i = 1, . . . ,NF , j = 1, . . . ,M, are found by solving eigenvalue problems of

(3.8) as done for CSP, where wi
j is the eigenvector corresponding to the jth largest

eigenvalue in the eigenvalue problem in the filtered signals by Hi. Features are

selected out of a set of {wi
j|i = 1, . . . ,NF , j = 1, . . . ,NM,M − NM + 1, . . . ,M} by a

method based on mutual information between extracted features and its class la-

bels, where NM is the number of the spatial filter for a filter in the set. In [50], mu-



40 CHAPTER 3. FEATURE EXTRACTION FOR MOTOR-IMAGERY EEG

tual information based best individual feature (MIBIF) and mutual information-

based naı̈ve Bayesian Parzen window (MINBPW) are introduced for selecting fea-

tures. After selecting features, the selected r sets of indexes of the spatial weight

and the filter are obtained as {κ1, υ1}, . . . , {κr, υr}, where κi ∈ {1, . . . ,NM,M−NM +

1, . . . ,M} and υi ∈ {1, . . . ,NF}. We denote the feature vector extracted from X by

y = [σ2(X̂υ1 ,w
υ1
κ1

) . . . ,σ2(X̂υr ,w
υr
κr

)]T . (3.27)



Chapter 4

Common Spatio-Time-Frequency

Patterns

The chapter proposes the CSTFP method. This method enables us to simulta-

neously design the parameters for the sets of the spatial weights, the frequency

filters, and the time windows. We first show a signal extraction model with the

sets of the filters in multichannel EEG observations in Sec. 4.1. In Sec. 4.2, an

optimization problem is defined for design of the parameters that make the ex-

tracted signal have discriminative features. For solving the optimization problem,

we propose an optimization method by using sequential optimization procedures

and alternating optimization procedures. Section 4.4 proves the convergence in

the iterative updating for solving the problem. Section 4.5 gives some examples

for the constraints in the optimization problems. We evaluate performances of the

CSTFP method and compare it with existing method in experiments of artificial

signals and BMI datasets in Secs 4.6 and 4.7, respectively.

41
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Figure 4.1: Signal extraction with a temporal filter h, spatial weights, w, and a

time window, b. Z−n is an operator of n samples delay.

4.1 Signal Extraction Model

The target signal and signal extraction procedure is formulated in this section. The

filtered signal of a target signal, X , denoted as x̂ = [x̂1, . . . , x̂K]T , is defined as

x̂n = bn

M∑

m=1

wm

P∑

p=1

hp[xn+P−p]m, (4.1)

for n = 1, . . . ,K, K = N − P + 1, where [·]i is the ith entry of a vector, P is the

filter order of an FIR filter of which the coefficients are denoted by h1, . . . , hP,

wm is a spatial weight for mth channel, bn is a time window for nth sample that

takes a binary value of either 0 or 1. The structure of temporally filtering, spatial

weighting, and windowing for X is illustrated in Fig. 4.1. In this model, wm

regards as the spatial pattern, hp regards as the frequency pattern, and bn regards

as the time pattern of the extracted signal.
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The sample variance of x̂n over time n = 1, . . . ,K, is described as

αX(w,h, b) =
1
∥b∥

K∑

n=1

∣∣∣∣∣∣∣
x̂n −

1
K

K∑

i=1

x̂i

∣∣∣∣∣∣∣

2

, (4.2)

where w is defined as w = [w1, . . . ,wM]T , h is defined as h = [h1, . . . , hP]T , and

b is defined as b = [b1, . . . , bN]T .

The variance defined in (4.2) can be transformed to matrix-vector form as

follows. We define An, n = 1, . . . ,K, whose elements are from X as

[An]m,p = [X]m,n+P−p, (4.3)

for m = 1, . . . ,M, p = 1, . . . , P, where [·]i, j is the element at the ith row and the

jth column of a matrix. Then, (4.2) can be modified to

αX(w,h, b) =
1
∥b∥

K∑

n=1

bn

∣∣∣wTÂnh
∣∣∣2 , (4.4)

where Ân is defined as

Ân = An −
1
∥b∥

K∑

m=1

bmAm. (4.5)

4.2 Optimization for Sets of Parameters

We consider the problem for design of F sets of the FIR filter, the spatial weights,

and the time window represented by {wi,hi, bi}Fi=1. These sets of the parame-

ters are designed in such a way that wi, hi, and bi maximize expectation of

αX(wi,hi, bi) with respect to X ∈ Cc samples under the normalization of an

expectation of αX(wi,hi, bi) over all of the observation. Additionally, we impose

the orthonormality on hi, i = 1, . . . , F to avoid the trivial solution. Moreover, the
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time windows are chosen from given candidates for efficient optimization. There-

fore, we formulate the following maximization problem;

max
Pi,i=1,...,F

F∑

i=1

Ĵ(Pi) +
ϵ

K
∥bi∥,

subject to
hT

i h j

∥hi∥ ∥h j∥
= δi j, i, j = 1, . . . , F,

hk ∈ S⊥k , k = 1, . . . , F,

bl ∈ B, l = 1, . . . , F,

(4.6)

where Pi represents set, {wi,hi, bi}, Ĵ(Pi) is the cost evaluating the ratio of the

feature value in all samples defined as

Ĵ(Pi) =
EX∈Cc[αX(wi,hi, bi)]∑

d=1,2 EX∈Cd [αX(wi,hi, bi)]
, (4.7)

Si is any subspace in RP, B is a candidate set for the time windows, defined as

B = {bl}Ll=1, c is a class label chosen from 1 and 2, ϵ is a regularization parameter,

and δi j is the Kronecker delta defined as 1 for i = j and 0 otherwise.

Since it is difficult to simultaneously find all parameters, we consider sequen-

tial optimization to find the parameters with respect to each filter index i. That

is, we first find P1, and then find P2 under the constraint on h1. This sequential

optimization is represented with respect to each i as

max
Pi

Ĵ(Pi) +
ϵ

K
∥bi∥,

subject to hi ∈ Ŝ⊥i , b ∈ B,
(4.8)

where Ŝi is a subspace defined as

Ŝi = Span{h1, . . . ,hi−1} ⊕ Si ∈ RP, (4.9)

where Span(· · · ) represents a subspace spanned by vectors and the operator de-

noted by ⊕ gives the direct sum of two subspaces. Methods for choosing Ŝi will
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be discussed in Sec. 4.5. In (4.8), to optimize the parameters indexed with i, we

adopt alternating optimization procedure based on alternating least square (ALS).

In the optimization, we separate the problem of (4.8) into three subproblems for

wi, hi, and bi, respectively. Then, we update the parameters by alternating solving

the subproblems. The three subproblems and these solutions are as follows.

The first subproblem is to optimize wi. While fixing hi and bi, wi maximizing

(4.8) is found as the generalized eigenvector corresponding to the largest general-

ized eigenvalue of the generalized eigenvalue problem [48] described as

Rcwi = λ(R1 +R2)wi, (4.10)

where

Rd = EX∈Cd

⎡
⎢⎢⎢⎢⎢⎣

1
∥bi∥

K∑

n=1

[b]nÂnhih
T
i ÂT

n

⎤
⎥⎥⎥⎥⎥⎦ , (4.11)

for d = 1, 2, and λ is an eigenvalue.

The second subproblem is to optimize hi. The solution to the problem op-

timizing h while fixing wi and b with the orthogonal constraint is given by the

following theorem.

Theorem 1. When matrices Qc and Q1+Q2 are nonsingular, the solution is given

by the unit-length generalized eigenvector corresponding to the largest general-

ized eigenvalue of the generalized eigenvalue problem described as

GQchi = ζ(Q1 +Q2)hi, (4.12)

where

Qd = EX∈Cd

⎡
⎢⎢⎢⎢⎢⎣

1
∥bi∥

K∑

n=1

[bi]nÂ
T
n wiw

T
i Ân

⎤
⎥⎥⎥⎥⎥⎦ , d = 1, 2, (4.13)

G = IP − V (V T (Q1 +Q2)−1V )−1V T (Q1 +Q2)−1, (4.14)
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V is the matrix defined as

V = [vi1, . . . ,viDi] ∈ RP×Di , (4.15)

vi1, . . . ,viDi are vectors spanning Ŝ i described as

Span{vi1, . . . ,viDi} = Ŝi, (4.16)

and IP is the P × P identify matrix, and ζ is an eigenvalue.

Proof. See Appendix A.1. !

The third subproblem is to optimize bi while fixing wi and hi. The cost of

(4.8) can be reduced to

J3(bi|wi,hi) =
g1(bi)

g1(bi) + g2(bi)
+
ϵ

K
∥bi∥. (4.17)

Then

gd(b) = EX∈Cd

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
∥b∥

K∑

n=1

⎛
⎜⎜⎜⎜⎜⎝bnx̃n −

1
∥b∥

K∑

k=1

bk x̃k

⎞
⎟⎟⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎥⎥⎦

=
1
∥b∥EX∈Cd

[
bT (ξ + 2µx̃) + µ

]
,

(4.18)

where x̃n = wT
i Anhi, x̃ = [x̃1, . . . , x̃K]T , ξ = [x̃2

1, . . . , x̃
2
K]T , and µ = ∥b∥−1bT x̃.

Because bi are chosen out of B, we calculate the values J3(b̂i) for all candidates

in B and the optimal bi can be chosen as the candidates that maximizing J3. This

formulates that

bi = argmax
b∈B

J3(b). (4.19)

The procedure to design the spatial weights, the temporal filters, and the time

windows is summarized in Algorithm 1 as a pseudo-code.
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Algorithm 1 Design of the FIR filters, the spatial weights, and the time windows
Input: C1 and C2: the sets of observed signals.

Parameters: F: the number of FIR filters, P: the filter order, B: the set of the

candidates for the time window.

Output: {wi}Fi=1: the spatial weights, {hi}Fi=1: the vectors of FIR filter coeffi-

cients, {bi}Fi=1: the time window.

for i = 1, . . . , F do

Initialize hi and bi.

Set the index of iteration as k = 0.

repeat

k ← k + 1.

Update wi by solving (4.10).

Update hi by solving (4.12).

Update bi by solving (4.19).

Calculate cost, Ck from the cost function, Ĵ(Pi).

until Ck −Ck−1 is sufficiently small.

end for
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4.3 Feature Vector Definition

With designed wi, hi, and bi, the feature vector of an EEG signal, X , for classifi-

cation is defined as

y =[αX(ŵ(1)
1 ,h1, b1), . . . ,αX(ŵ(2r)

1 ,h1, b1), . . . ,

αX(ŵ(1)
F ,hF , bF), . . . ,αX(ŵ(2r)

F ,hF , bF)]T ,
(4.20)

where the set of {ŵ(1)
i , . . . , ŵ

(2r)
i } is the CSPs corresponding to hi and bi. ŵ(m)

i ,

i = 1, . . . , F, m = 1, . . . , 2r, are decided as follows. By solving (4.10) with hi and

bi, we obtain MF spatial patterns as w̃(m)
i for i = 1, . . . , F and m = 1, . . . ,M, where

w̃(m)
i is the unit-length eigenvector corresponding to the m-th largest eigenvalue

of (4.10). Then ŵ(m)
i are defined as ŵ( j)

i = w̃( j)
i and ŵ(r+ j)

i = w̃(M− j+1)
i for i =

1, . . . , F, j = 1, . . . , r.

4.4 Convergence of Cost Function in Optimization

The alternating optimization of DFBCSP does not increase the cost functions and

leads to a local maximum solution of (4.8). Here we give the guarantee of conver-

gence of the cost in the alternating iteration.

Proposition 1. The cost function of (4.8) monotonically increases or remains the

same by iterations. That is,

0 ≤ Ĵ(P(k)
i ) ≤ Ĵ(P(k+1)

i ) ≤ 1, (4.21)

where P(k)
i are the set of the parameters to be optimized at kth iterations.

Proof. See Appendix A.2. !
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4.5 Search Space for FIR Filter Coefficients

The algorithm of the sequential update defined in (4.8) seeks hi in the orthogonal

complement of Ŝi. In this section, we introduce two ways to determine Ŝi.

4.5.1 Subspace Spanned by Filter Coefficients Vectors

This way uses as Ŝi a subspace:

Ŝi = Span{h1, . . . ,hi−1}. (4.22)

Because h1, . . . ,hi−1 are orthogonal from each other, they are a set of an orthog-

onal basis of Ŝi.

4.5.2 Subspace Spanned by Filter Coefficients Vectors and Its

Shifted Vectors

The subspace given as in (4.22) can yield similar bandpass filters in terms of

the amplitude characteristics in the frequency domain. To avoid this redundancy,

time-shifted filters of h1, . . . ,hi−1 can be used for forming the subspace;

Ŝi = Span{h1, . . . ,hi−1,h
′
1, . . . ,h

′
i−1}, (4.23)

where h′j, j = 1, . . . , i − 1 are defined as

[h′j]k = [h j]((k+1) mod P), k = 1, . . . , P. (4.24)

This formulation is justified as follows. Taking into account that a filter vector

can be decomposed into the superposition of sinusoids, we consider a simple filter

given by a sinusoidal impulse response as

[ha]n = sinωp(n − 1), (4.25)
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for n = 1, . . . , P. Suppose Ŝb as the search space for hb in the optimization

problem of (4.8) and Ŝb ∋ ha. The solution, hb, can be a time-shifted filter of ha

such as

[hb]n = cosωp(n − 1), (4.26)

for n = 1, . . . , P, because of the orthogonality:

⟨ha,hb⟩ =
N−1∑

n=0

sinωpn cosωpn = 0. (4.27)

This implies that given a filter, the orthogonal complement to ha can include a

solution of filters that have the amplitude characteristics similar to the given filter.

The time-shifted solution such hb can be avoided by including cosωpn or any

time-shifted filter of ha in Sa, since

cosωpn = c1 sinωpn + c2 sinωp(n + m), ∀n, (4.28)

or

hb = c1ha + c2h
′
a, (4.29)

where c1 and c2 are appropriate coefficients and m ! lπ/ωp, m, l ∈ Z. Therefore,

after obtaining ha, its shifted vector such as hb is not in Ŝ⊥a+1 defined in (4.23).

4.6 Simulation by Artificial Signal

We give an analysis of CSTFP by a toy experiment with an artificial signal in

this section. We assume a 2-class BMI where observed EEG signals are modeled

by a mixture of narrow-band signals (see Fig. 4.2). In this model, a trial signal

belonging to class d is given by

x[n] =
Ns∑

i=1

si[n]a(d)
i + η, n = 0, . . . ,N − 1, (4.30)
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where d is a class label taking either 1 or 2, x[n] ∈ RM is a vector representing a

signal at a discrete time point n, N is the number of time samples for a trial, M is

the number of channels, si[n] ∈ R is an ith source signal of feature components,

Ns is the number of the source signals, a(d)
i ∈ RM is a vector defined as a(d)

i =

[a(d)
i1 , . . . , a

(d)
iM]T , a(d)

im ∈ R is the amplitude of si[n] in the mth channel for class d,

and η ∈ RM is a stochastic noise. The source signals, si[n], are generated as

si[n] = ti[n]ℜ
⎡
⎢⎢⎢⎢⎢⎣

N−1∑

k=0

S i[k]e jθe j 2πk
N n

⎤
⎥⎥⎥⎥⎥⎦ , (4.31)

where S i[k] ∈ R represents a discrete spectrum, ti[n] represents the time window

that decides the period when the ith source signal is generated, θ ∈ R is a stochastic

phase of the source signals, and the operator denoted by ℜ takes a real part of a

complex number.

Specifically, 200 artificial signals we used in the experiment were generated

with the conditions shown in Table 4.1 whereN(m,σ2) is a Gaussian distribution

with a mean, m, and a variance, σ2 and U(a, b) is a uniform distribution whose

minimum and maximum values are denoted by a and b, respectively.

We applied the CSTFP method to the artificial signals as follows. The class

label represented by c in (4.7) was set to 1. The number of the sets of the param-

eters, F, was set to 4. The order of the temporal filters was set to 41, yielding that

P = 41, the length of a filtered signal, K, is 60. For the given candidates for the

time windows, we define the following set. First, we define ten K-dimensional

vectors as

d j = [0, . . . , 0︸!!︷︷!!︸
D( j−1)

, 1, . . . , 1︸!!︷︷!!︸
D

, 0, . . . , 0]T , j = 1, . . . , 10, (4.32)

where D = 6. Then, we use all combinations of {d j}10
j=1 represented by

b̂l = p1d1 + . . . + p10d10, (4.33)
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Table 4.1: The conditions for generating the artificial signals.

Parameter Value or distributions

Number of channel, M 10

Number of samples, N 100

Number of trials for each class 100

Sampling frequency 100 Hz

Number of sources, Ns 4

Spectra of sources, |S i[k]| Figs. 4.2a–4.2d

Stochastic phase, θ U(0, 2π)

Time windows, ti[n] Figs. 4.3a–4.3d

Amplitudes, a(d)
i Figs. 4.4a–4.4d

Stochastic noise, [η]m N(0, 0.1)

and pj ∈ {0, 1}, j = 1, . . . , 10, as the given candidate set. Therefore, the number

of the candidates, L, was 1023. Moreover, for Ŝi that determines the search space

for hi, we used that

Ŝi = Span{h1, . . . ,hi−1,h
′
i−1, . . . ,h

′
i−1}. (4.34)

The optimization resulted in Figs. 4.2e–4.2h for the amplitude characteristics

of the FIR filters, Figs. 4.3e–4.3h for the time windows, and Figs. 4.4e–4.4h for

the normalized spatial weights.

The centers of passbands of the filters shown in Figs. 4.2e–4.2h coincide with

the centers of the source signals shown in Figs. 4.2a–4.2d. Moreover, in the spec-

trum of the source and the amplitude characteristic of the designed FIR filter

that have the similar center frequencies, the spatial amplitude corresponding to

the source and the spatial weight vector corresponding to the FIR filter are simi-
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lar to each other. For instance, the correlation coefficient between a(1)
1 shown in

Fig. 4.4a with circles and w(1)
2 shown in Fig. 4.4f with circles is 0.971.

The results also suggest that the time windows designed by the CSTFP method

can remove samples observed in the periods of time that do not contain the source

signals. For instance, hence the source signal, s1[n], is not observed in first 25

samples according to Fig. 4.3a, the time window for extracting s1[n] is expected to

remove first 25 samples. Because |S 1[k]| and the amplitude characteristics shown

in Fig. 4.2f have the similar center frequency, we can decide that the time window

for extracting s1[n] is the time window shown in Fig. 4.3f. Although the designed

time windows does not coincide with ti[n] because b is applied to an FIR-filtered

signal that is shorter than than the original one, the time window removes samples

in the first 10 samples, as we expected. Moreover, we can decide that the time

window shown in Fig. 4.3c is for extracting s3[n] due to the same reason. As the

observed signals do not have s3[n] in the last 25 samples (see Fig. 4.3c), the time

window shown in Fig. 4.3c removes samples in the last 20 samples.

4.7 Classification Experiment of BMI Datasets

A comprehensive comparative study was performed to illustrate the ability of the

CSTFP method to produce more accurate classification of EEG signals during mo-

tor imagery over several conventional methods (CSP [43], common sparse spectral

spatial patterns (CSSSP) [45], filter bank CSP (FBCSP) [50], and discriminative

filter bank CSP (DFBCSP) [48]).
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4.7.1 Data Description

We used dataset IVa from BCI competition III [29], which was provided by Fraun-

hofer FIRST (Intelligent Data Analysis Group) and Campus Benjamin Franklin

of the Charité - University Medicine Berlin (Department of Neurology, Neuro-

physics Group) [40] and dataset 1 from BCI competition IV, which was provided

by Berlin Institute of Technology (Machine Learning Laboratory), Fraunhofer

FIRST (Intelligent Data Analysis Group), and Campus Benjamin Franklin of the

Charité - University Medicine Berlin (Department of Neurology, Neurophysics

Group) [113]. The condition for each dataset is shown in Table 4.2. They have

two classes of motor imagery. The signals in the provided datasets were recorded

with the sampling rate of 1000 Hz. We furthermore applied to this dataset a But-

terworth lowpass filter whose cutoff frequency is 50 Hz and filter order is 4, and

downsampled to 100 Hz.

We additionally conducted the classification experiment with a dataset we

recorded by ourselves. We call our dataset the original dataset in the thesis. The

recording for the original dataset was approved by the research ethics committee

of Tokyo University of Agriculture and Technology. The condition for the dataset

is also shown in the third column of Table 4.2. During the recording, the subjects

who participated in the dataset performed the MI tasks that were represented by

the visual cue. The cue was as an arrow on an LCD screen. The right arrow repre-

sented the direction that the subject performs the motor imagery task of the right

hand. The left arrow represented the direction that the subject performs the motor

imagery task of the left hand. The subject performed the tasks repeatedly with an

interval of around 3 seconds. The EEG signals were recorded with Ag/AgCl ac-

tive electrodes (g.LADYbird, g.LADYbirdGND, and g.GAMMAearclip produced
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by Guger Technologies) and a power supply (g.GAMMAbox produced by Guger

Technologies). The electrodes were placed at F3, Fz, F4, FC5, FC3, FC6, FCz,

FC2, FC4, FC6, T7, C5, C3, C1, Cz, C2, C4, C6, T8, CP5, CP3, CP1, CPz, CP2,

CP4, CP6, P3, Pz, and P4 (the positions are represented by the notation of Interna-

tional 10-10 system [78]). The signals observed by the electrodes were amplified

by an amplifier (MEG-6116 produced by Nihon Kohden). The amplifier more-

over analog-filtered the signals with the passband of 0.5–100 Hz. The signals

through the amplifier were sampled by an A/D converter (AIO-163202F-PE pro-

duced by Contec) with the sampling rate of 256 Hz. The converted signals were

recorded with Data Acquisition Toolbox that is one of the toolboxs of MATLAB

(MathWorks). We furthermore applied to this dataset a Butterworth lowpass filter

whose cutoff frequency is 50 Hz and filter order is 4, and downsampled to 128 Hz.

4.7.2 Result

For the experiments, as a sample for each trial, we used a signal observed in the

period of T1 to T2 [sec] after the cue that directs the subject to perform the task.

In the experiments, T1 was tuned by a method we mention later. T2 was set to 3.5

and 4 seconds for BCI competition III dataset IVa and IV dataset 1, respectively.

In order to compare the classification abilities for the methods, we obtained the

classification accuracy rates by 5×5 cross validation (CV). In each classification in

the CV, we separated learning samples for selecting the parameters of the feature

extraction and a linear discriminant analysis (LDA) classifier, and test samples for

obtaining classification accuracy rates.

For the methods to be compared (CSP, CSP-Exh, CSSSP, FBCSP, DFBCSP,

CSTFP), the parameters for the feature extraction were obtained as follows.
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• CSP: The parameters determined in this method are spatial weights. Before

obtaining the spatial weights by the CSP method, we applied the Butter-

worth bandpass filter with the passband of 7–30 Hz. In the CSP method, we

minimized the variance cost of the right hand class in (3.5). The eigenvec-

tors corresponding to the r largest and r smallest eigenvalues of the eigen-

value problem (3.8) were given as the spatial weights.

• CSP-Exh: The parameters determined in this method are spatial weights

and a passband of the Butterworth filter. The passband of the Butterworth

filters were tuned as fl– fu Hz by an exhaustive search by the CSP method

and the learning samples. After the filtering with the passband, the spatial

weights were given by the same manner as the CSP method.

• CSSSP: The parameters determined in this method are spatial weights and

a bandpass filter. The bandpass filter between 7–30 Hz was applied as pre-

processing [45]. CSSSP was applied with a regularization parameters, C,

and the parameter for the number of the spatial weights, r. The order of the

filter was fixed to 16 [45].

• FBCSP: The parameters determined in this method are r bandpass filters

out of a filter bank and associated spatial weights. FBCSP was applied with

the mutual information based best individual feature and a naı̈ve Bayesian

Parzen window (NBPW) classifier [50]. The filter bank comprising 9 band-

pass filters covering 4–40 Hz was used. All filters were Chebyshev Type II

filters with a bandwidth of 4 Hz each. In FBCSP, the number of the spatial

weights, NM, in each band was set to 8. These parameters were decided by

referring [50].
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• DFBCSP: The parameters determined in this method are F FIR filters and r

spatial weights associated to each FIR filter. DFBCSP was applied with the

FIR filter order of 41 as done in [48]. In optimization, we stopped iteration

when error of the cost function between successive iterations becomes under

10−5.

• CSTFP: The parameters determined in this method are F FIR filters, the

corresponding F time windows, and r spatial weights associated to each

FIR filter We fixed T1 = 0 to observe the behavior of the resulting time

window. CSTFP applied with the FIR filter order, 41 [48], and the following

candidate set for the time windows. The candidate set for the time windows,

B, is consisted of the vectors defined as

b̂l = [0, . . . , 0︸!!︷︷!!︸
D

, 1, . . . , 1︸!!︷︷!!︸
O

, 0, . . . , 0]T , (4.35)

where we choose D and O out of a set {0, 5, 10, . . . ,K} such that O > 50

and D + O ≤ K. The regularization parameter, ϵ, was set to 0.1. In alter-

nating optimization, we initialize hi as a random vector which is orthonor-

malized from v1, . . . ,vDi and bi as a vector all elements of which are one.

We stopped iteration when error of the cost function between successive

iterations becomes under 10−5.

For the obscure parameters such as r in the above list, we furthermore tuned them

by 5×5 CV using the learning samples as done in [114]. We conducted the nested

CV [114] with all of the combinations of these parameters and obtained the clas-

sification accuracy rates. We adopted the combination that performed the highest

rates as the parameters. The parameters tuned by the nested CV in the learning

data and the candidates for them are summarized in Table 4.3.
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Table 4.3: The parameters decided by the nested CV in the learning data in the

classification experiments.

Method Parameters and Candidates

CSP T1 ∈ {0, 0.25, 0.5, 0.75}

r ∈ {1, 2, . . . , 10}

CSP-Exh T1 ∈ {0, 0.25, 0.5, 0.75}

r ∈ {1, 2, . . . , 10}

fl ∈ {1, 2, . . . , 48}

fu ∈ { fl + 1, fl + 2, . . . , 49}

CSSSP T1 ∈ {0, 0.25, 0.5, 0.75}

r ∈ {1, 2, . . . , 10}

C ∈ {0, 0.01, 0.1, 0.2, 0.5, 1, 2, 5}

FBCSP T1 ∈ {0, 0.25, 0.5, 0.75}

r ∈ {1, 2, . . . , 10}

DFBCSP T1 ∈ {0, 0.25, 0.5, 0.75}

r ∈ {1, 2, . . . , 10}

F ∈ {1, 2, . . . , 5}

CSTFP r ∈ {1, 2, . . . , 10}

F ∈ {1, 2, . . . , 5}
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Table 4.4: Classification accuracy rates [%] given by 5×5 CV in dataset IVa from

BCI competition III. The figure with ± represents the standard deviation (S.D.)

over CV.
Method Subject

aa al av aw ay Ave.

CSP 79.9±4.6 98.4±1.6 71.9±3.5 96.8±2.6 92.5±3.1 87.9

CSP-Exh 90.8±3.6 99.1±1.4 74.4±5.5 99.1±1.4 93.0±4.2 91.3

CSSSP 91.5±3.7 99.1±1.6 71.1±6.9 98.8±1.4 93.1±3.5 90.7

FBCSP 91.3±3.4 99.3±1.5 70.7±7.4 98.2±1.6 88.4±4.8 89.6

DFBCSP 91.9±2.6 98.9±1.5 74.8±4.0 98.9±1.6 96.0±3.1 92.1

CSTFP 92.6±2.1 98.9±1.5 75.4±5.3 99.0±1.3 96.0±2.4 92.5

After we obtained the feature vectors extracted by the filters, spatial weights,

and the time windows that are designed by each listed method, we calculated the

logarithm of the feature vectors. Then, the LDA for the learning samples was used

for obtaining a projector onto the 1-dimensional space. The threshold for classifi-

cation was determined as the middle point of two class averages over the projected

learning samples. The feature vectors from the test samples were classified by the

projection and the threshold and we obtained the classification accuracy rate in

each CV. In Tables 4.4, 4.5, and 4.6 in which we show the classification accura-

cies of each subject and method, CSTFP results in the highest accuracy rate in the

average over whole subjects.

Moreover, we conducted the classification experiments, in which the parame-

ters shown in Table 4.3 were fixed, to show effects of changes of the parameters

in the classification accuracy rates. Figures 4.5 and 4.6 show the accuracy rates

of CSP and the rates of each method averaged over all subjects with each T1.
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Table 4.5: Classification accuracy rates [%] given by 5×5 CV in dataset 1 from

BCI competition IV. The figure with ± represents the standard deviation (S.D.)

over CV.
Method Subject

a b f g Ave.

CSP 89.6±5.1 68.8±6.7 78.1±6.5 93.9±3.4 82.6

CSP-Exh 92.3±2.5 85.3±6.9 78.1±6.5 93.9±3.6 90.2

CSSSP 89.8±5.5 70.4±9.5 85.3±5.3 93.4±4.1 84.7

FBCSP 87.3±8.6 63.9±14.1 78.6±6.9 94.1±4.1 81.0

DFBCSP 89.7±5.0 85.6±6.9 92.5±4.4 93.7±4.3 90.4

CSTFP 91.4±4.0 90.6±7.2 93.3±3.6 93.5±4.1 92.2

For each subject, the parameters shown in Table 4.3 except for T1 were fixed to

the combinations of the parameters that performed the highest accuracy rates with

each T1. In Fig. 4.5, T1 that perform the highest accuracy rates are different among

the subjects. Moreover, Fig. 4.6 shows that the accuracy rates highly depend on

T1 in the conventional methods. Figures 4.7 and 4.8 show the variation of the

accuracy rates by the various regularization parameters, ϵ, in CSTFP. For each

subject, the parameters, r and F, were fixed to the combinations of the parameters

that performed the highest accuracy rates with each ϵ. CSTFP performs higher

accuracy as ϵ goes higher than 0.1.

We show examples of the spatial patterns, the frequency patterns (the ampli-

tude characteristics of the FIR filters), and the time patterns designed by CSTFP

in Figs. 4.9 and 4.10. As we can observe in Figs. 4.7, 4.8, 4.9a, and 4.10a, the

short time windows caused by small ϵ result in poor classification accuracy rates.

All of the time windows shown in Figs. 4.9 and 4.10 remove the samples ob-
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Table 4.6: Classification accuracy rates [%] given by 5×5 CV in the original

dataset. The figure with ± represents the standard deviation (S.D.) over CV.

Method Subject

sa sb sc Ave.

CSP 87.3±3.9 54.7±8.8 92.0±4.8 78.0

CSP-Ref 92.8±3.3 55.3±7.6 92.0±3.9 80.0

CSSSP 91.0±4.1 56.1±9.7 93.1±3.3 80.1

FBCSP 75.2±17.7 50.1±8.8 74.5±16.6 66.6

DFBCSP 90.8±4.3 52.5±6.7 93.9±4.0 79.1

CSTFP 91.7±4.5 57.4±7.4 94.1±4.0 81.1

served within a few hundreds milliseconds after the cue. The results suggest that

the brain activities related to the task can not be observed just after the cue. In

Figs. 4.9c–4.9e and 4.10c–4.10e, the time windows do not significantly change in

around 0.1–0.4 of ϵ. This result of the relations between ϵ and the time windows

corresponds with the result shown in Figs. 4.7 and 4.8 in which the classification

accuracy rates do not strongly depend on the regularization parameter, ϵ, more

than 0.12. Moreover, the FIR filters do not highly differ even with various ϵ.

However, the spatial weights with the small windows (Figs. 4.9a and 4.10a) differ

from the other weights with the longer windows. Furthermore, there are slight

differences in the time patterns and the frequency patterns between subject aa and

subject av.
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Figure 4.5: The variation of the accuracy rates by various T1 in CSP.

4.8 Conclusion

We have proposed a novel method called CSTFP for classification of EEG sig-

nals during motor imagery. Our objective is to design the time windows that are

adopted in signal processing for a cue-based BMI. The method has allowed us to

simultaneously design the parameters for the time windows, the spatial weights,

and the FIR filters. These parameters are optimized in a single criterion based on

the CSP method. We have shown the optimization procedure for the problem of

the CSTFP method that is conducted by sequentially and alternatively solving the

subproblems into which the original problem is divided. Through the experiments

of the artificial signals and actual EEG signals, we have shown the performance
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accuracy rates are averaged over all subjects.

of CSTFP. In the experiment, we have demonstrated that CSTFP achieves high

classification accuracy rate. Our experimental results also suggest that the CSTFP

method can find the frequency bands and the time periods in which brain activities

associated to a mental task can be observed.
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Chapter 5

Regularization with Sensor Positions

This chapter proposes the regularization of using similarity of weighted signals

in nearby sensors. First, a distance between electrodes of EEG measurement sys-

tem is defined in Sec. 5.1. Then we introduce the regularization derived with the

defined distance in Sec. 5.2. The regularization is adopted to the CSP method in

Sec. 5.3. We illustrate the ability of the proposed regularized CSP method for

extracting a local feature. The proposed method is demonstrated with artificial

signals in Sec. 5.4. Furthermore, the result of classification of the BMI datasets

by spatially weighting of the proposed method is shown in Sec. 5.5.

5.1 Distance Between Electrodes

We define a distance between electrodes on the arrangements used for EEG mea-

surement. International 10-20, 10-10, and 10-5 methods [62,77,79] have stood as

the de-facto standard of electrode arrangement. In these systems, locations on a

head surface are described by relative distances between cranial landmarks over

the head surface. Under an assumption that the shape of head is a sphere, the

73
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Figure 5.1: The electrode arrangement of the International 10-20 method on the

orthogonal coordinates. The red circles represent the electrodes.

locations on head surface can be describe coordinates represented by ξ = {x, y, z}.

We define the coordinates such as the axes of Fig. 5.1 that illustrates the electrode

positions of the international 10-20 method.

Given the positions of two electrodes as

ξi = {xi, yi, zi}, (5.1)

and

ξ j = {x j, y j, z j}. (5.2)

The question arising here is: how to define the distance between two points, on

the head. The Euclidean distance defined by

di, j = ∥ξi − ξ j∥ (5.3)

is a straightforward solution. In this study, we define the perimeter of a sector

the two sides of which are line segments between the origin and two electrode
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position on the coordinates as the distance between two electrodes. Let ψi j be the

angle between the line segments between the origin and ξi, and the origin and ξ j.

The distance by the perimeter is defined as di j = νψi j, where ν = ∥ϵi∥ = ∥ϵ j∥.

Moreover, because

cosψ =
< ξi, ξ j >

ν2 (5.4)

and ν = 1, di j can be represented by

di j = arccos(xix j + yiy j + ziz j). (5.5)

The metric is illustrated in Fig. 5.1. In the figure, we show the distance between

Fz and O1 as an example. The length of the curve connecting Fz and O1 is the

defined distance by the metric.

5.2 Regularization

Consider a sensor array consisting of M sensors. A signal sample observed in the

ith channel at a time instance is denoted by xi. A set, {xi}Mi=1, forms a vector x

defined as x = [x1, . . . , xM]T . We obtain di j for i, j = 1, . . . ,M as the distances

between sensors by the metric defined in Sec. 5.1. To mainly evaluate the regu-

larization costs between each sensor and its nearby sensors, the Gaussian metric

between two points;

gi j = exp
⎛
⎜⎜⎜⎜⎜⎝−

d2
i j

2p2

⎞
⎟⎟⎟⎟⎟⎠ , (5.6)

is employed, where p denotes a parameter to tune the closeness of the two sensors.

Then we define the cost;

P(w) = Ex

⎡
⎢⎢⎢⎢⎢⎢⎣

M−1∑

i=1

M∑

j=i+1

gi j|wixi − wjx j|2
⎤
⎥⎥⎥⎥⎥⎥⎦ , (5.7)
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which evaluates the mean of squared error between weighted signals observed in

sensors that are located near each other, Note that the cost (5.7) becomes small as

the weighted signals become similar in the nearby sensors.

Equation (5.7) can be transformed to matrix vector form as

P(w) = Ex[wTDx(C −G)Dxw] = wTBw, (5.8)

where C and Dx are diagonal matrices defined as

[C]ii =

M∑

k=1

gik, [Dx]ii = xi, i = 1, . . . ,M, (5.9)

each element of G ∈ RM×M is defined as

[G]i j = gi j, i, j = 1, . . . ,M, (5.10)

and

B = Ex[Dx(C −G)Dx]. (5.11)

To take expectation over x for obtaining B, we can use the sample average of

observed signals.

5.3 CSP with Regularization with Sensor Positions

The CSP method [42, 43] is effective in feature extraction and classification for

two-class MI-BMI. In this section, we first review the standard CSP method.

Then, we exhibit how to apply the regularization in described Sec. 5 for finding

CSP.

By adding the regularization term given as (5.7), the modified regularized op-

timization problem is defined as

min
w

wT (Σc + γB)w,

subject to wT (Σ1 +Σ2)w = 1,
(5.12)
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where γ is a combination coefficient. If the matrices of Σc + γB and Σ1 +Σ2 are

nonsingular, (5.12) is equivalent to the generalized eigenvalue problem:

(Σc + γB)w = λ(Σ1 +Σ2)w. (5.13)

5.4 Simulation by Artificial Signals

An analysis of the proposed method by a toy experiment with artificial signals is

given. We used the mixture of synthetic source and noise signals. We assume to

know the spatial distributions of the source signals. The spatial weights derived

by the CSP method and the regularized CSP method were compared with the true

distribution.

We assumed a 2-class BMI where observed EEG signals are modeled by a

mixture of narrow-band signals. In this model, two signals, x1 and x2, belonging

to class 1 and class 2, respectively, are given by

x1[n] = a1[n]s[n] + η, x2[n] = a2[n]s[n] + η, (5.14)

for n = 1, . . . ,N, where x1[n],x2[n] ∈ RM denote vectors representing a signal

observed at discrete time instance n, N denotes the number of time instances,

M denotes the number of channels, s[n] ∈ R denotes a source signal of feature

component, a1,a2 ∈ RM denote vectors defined by ai = [ai1, . . . , aiM]T , aim ∈ R

denote an amplitude of the source at the mth channel for class i, and η ∈ RM

denote a stochastic noise.

The simulation settings for generating artificial signals were shown in Ta-

ble 5.1. The observed signal in 2 channels are shown in Fig. 5.5.

The topographically plotted spatial weights given by by the standard CSP and

the proposed methods are shown in Fig. 5.6. The parameters for the proposed
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Table 5.1: The settings for generating artificial signals

Parameter Value and distribution

Number of channels 118

Electrodes arrangement Int’l extended 10-20

Number of samples 512

Sampling frequency 512

Spectrum of the source signals Fig. 5.3

Distributions Fig. 5.4

Noise [η]m N(0, 0.1)

method are 0.05 for p and 108 for γ. Compared to the standard CSP, the weight

designed by the proposed method resulted in the large weight coefficients concen-

trated at the certain spots. Moreover we can observe in Fig. 5.6b that the topo-

graphical maps of the spatial weights given by the proposed method are similar to

the true distribution maps shown in Fig 5.4.

5.5 Classification Experiment of BMI Datasets

We compared performance in a two-class classification of EEG signals during

motor imagery using the proposed method to those using the standard CSP and

the spatially regularized CSP (SRCSP) [115], respectively.

5.5.1 Data Description

We used dataset IVa from BCI competition III. The details of the dataset are

shown in 4.7.1. The lowpass filter whose cutoff frequency is 50 Hz was applied

to recorded signals and the filtered signals was donwsampled to 100 Hz. Further-
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Figure 5.2: Source signals in the artificial signals

more, the signals were bandpass filtered with the passband of 7–30 Hz that is a

band including mu and beta rhythms. The dataset for each subject consisted of

signals of 140 trials per a class. The signal length for each trial is 3.5 seconds.

5.5.2 Features for Classification

The following feature vector was used for classification. In each case of c = 1

and c = 2, we solve (3.8) or (5.13), and then we got the eigenvectors correspond-

ing to the largest eigenvalues in each eigenvalue problem defined by ŵ1 and ŵ2,

respectively. By using the weight vectors, the feature vector was defined as

y = [σ2(X , ŵ1),σ2(X , ŵ2)]T . (5.15)

5.5.3 Results

Linear discriminant analysis [61] were used for classifying the extracted feature

vectors. For the proposed methods, we used the signals that were observed in the
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Figure 5.3: Spectrum of the source signals in the artificial signals

intervals between the tasks to form the regularization term (5.7) for each subject.

The classification accuracy was given by training for the spatial weights and

the classifier with randomly chosen 100 samples, and testing with the remaining

samples. An average accuracy over 100 times of this procedure is shown in in

Table 5.2. The parameter in (5.6) were set to p = 0.05 for SRCSP and the pro-

posed method, The parameter was chosen out of γ ∈ {100, 100.1, . . . , 1030}. The

best accuracy among the parameters for each subject is shown in Table 5.2. In

the result of Table 5.2, for aa, al, av, aw, and ay, γ were set to 109.4, 1012, 1011.1,

1010, and 1012.5, respectively, in SRCSP. In the proposed method, γ were set to

109.9, 1014.3, 1012.7, 1011.1, and 1014.4, respectively. The both of the regularized

CSP slightly outperform the standard CSP method in the classification accuracy

for all subjects.

Table 5.3 also shows classification accuracy, however when the number of the

training samples is considerably reduced to only five samples. As the same as in

Table 5.2, the parameters performing the best classification accuracy were chosen
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Figure 5.4: Spatial distributions of the source signal in the artificial signals.

Table 5.2: Classification accuracy rates [%] given by 100 training samples per a

class.
Subject

aa al av aw ay Ave.

CSP 81.4 94.8 53.1 92.9 89.6 82.3

SRCSP 82.2 95.2 64.2 94.3 92.7 85.7

Proposed 82.0 95.4 66.2 94.6 93.0 86.3

out of the candidates. For aa, al, av, aw, and ay, γ were set to 1010.4, 1010.5, 1012.5,

1010.8, and 1011.4, respectively, in SRCSP. In the proposed method, γ were set to

1013.6, 1013.5, 1016.9, 1013.9, and 1015.0, respectively. We can observe significant

improvement of the accuracy rates for subjects al and ay by the regularizations.

The results suggest that the proposed regularization can improve the accuracy even

if the number of training samples available is small.

The topographically plotted spatial weights for subject ay is shown in Fig. 5.7.

All samples in the dataset were used to find the spatial weights. The parameters
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Figure 5.5: Examples of the observed signals in the artificial signals

Table 5.3: Classification accuracy rates [%] given by 5 training samples per a

class.
Subject

aa al av aw ay Ave.

CSP 52.6 67.0 50.3 61.2 51.0 56.4

SRCSP 58.4 77.8 54.2 71.6 78.6 68.1

Proposed 59.2 81.3 54.4 71.3 79.3 69.1

of the proposed method, p and γ, were set to 0.05 and 1015, respectively. Com-

paring to the standard CSP, the electrodes which have large coefficients do not be

scattered spatially in the proposed method.

5.6 Conclusion

We have proposed the regularization based on the similarity of observed signals in

the nearby sensors for feature extraction problem in an EEG sensor array. More-
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corresponding to the largest eigenvalues of (3.8) and (5.13) (c = 1 (left) and c = 2

(right)) in the experiment using the artificial signals.



84 CHAPTER 5. REGULARIZATION WITH SENSOR POSITIONS

 

 

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

 

 

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(a) The standard CSP

 

 

−1

0

1

x 10−4

 

 

−6

−4

−2

0

2

4

6

x 10−5

(b) CSP with the regularization

Figure 5.7: Topographical maps of the spatial weights, ŵ(1)
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over, we have illustrated how to apply the proposed regularization to the CSP

method. The experimental results demonstrated that the proposed regularization

improves classification accuracy in a setting of the small number of samples.





Chapter 6

Conclusions and Open Problems

6.1 Conclusions

We conclude the study in this section. We have discussed the data-driven feature

extraction methods for classification of EEG signals in this study. The methods

are proposed to address the problems;

1) simultaneous design of spatial weights, frequency filters, and time windows

is impossible

2) extraction of multiple feature components modeled with different spatial

patterns, frequency patterns, and time patterns for each other is impossible,

3) overfitting of the designed parameters for the spatial weights often happens.

The CSTFP method has been proposed to address the problems 1) and 2).

We define a signal extraction model composed of the sets of the parameters of

the spatial filters, the frequency filters, and the time windows. The extraction

model includes the multiple filter sets having different spatial patterns, different

87
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frequency patterns, and different time patterns and each set extracts different fea-

ture components. The parameters of the sets are optimized with the criterion

based on the CSP method. Therefore, the filter sets are optimized for a specific

dataset. The conducted experiments suggest that the CSTFP method can extract

the feature components that have different patterns. The CSTFP achieves higher

classification accuracy rates than those of the existing methods. The experimental

results with the CSTFP method reveal a possibility that the feature components

associated with the MI are in the several bands.

The regularization using information of sensor arrangement has been proposed

to address the problem 3). Generally, the regularizations aim to add additional in-

formation such as bounds of the vector norm and smoothness to an original cost

function. The proposed regularization adds an assumption that spatially-weighted

signals observed in nearby sensors are similar. We have proposed the CSP al-

gorithm with the regularization. In the experiment of classification of the BMI

datasets, the regularized CSP performs high classification accuracy even in the

situation where only small learning datasets are available.

6.2 Open Problems

Finally, we show some open problems in the data-driven feature extraction for MI-

BMI. Although we have proposed the solutions for the problems, the following

challenging problems have been remaining.
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6.2.1 Adaptive System for Unstationary Feature Components

It is impossible to pursue feature components that are unstationary over time. The

feature components can be unstationary, because the feature components are af-

fected by the mental state of a subject. Moreover, feedbacking to a user in the

BMI systems has influence to the change of the feature components [3,9]. To pur-

sue the changes of the feature components, the parameters must be updated while

the subject uses BMI. For the adaptive updating, methods which take advantage

of common components [116] among the different MI tasks and fast algorithms

for designing the parameters are required.

6.2.2 Application to Self-Paced BMIs

The interesting other problem is application to self-paced (asynchronous) BMIs [25,

117]. In this study, our target is target cue-based BMIs in which a subject starts

to perform a desire task when the cue appeared. We set a period for classification

based on the cue information. On the other hand, an objective of the asynchronous

BMIs is that a subject performs a task without cue when the subject wants to input

it. The asynchronous BMIs require classification of idle state. And the BMI works

as an interface only if a subject performs specific tasks. In this way, the asyn-

chronous BMIs provide more user-friendly interface than the cue-based BMIs.

However, the data-driven methods for MI-BMI do not achieve enough accuracy

on classifying the idle state [113]. The low accuracy is caused by the idle state in-

cluding any brain states except for the BMI tasks. To solve the problem, we need

to define brain states to be possible to occur as the idle state. And a multiclass

classification technique for classifying them is needed.
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6.2.3 Application to Rehabilitation

In the application for rehabilitation for patient with brain damage, we need the

adaptive methods shown in the above to pursue the change of brain functions.

Additionally, a learning dataset may be not available because of lack of correct

labels in case of the rehabilitation. For dealing with this problem, a method with

the combination of heuristic and adaptive methods is required. For example, at

the beginning of the rehabilitation the parameters are designed with with datasets

given by the other patients and healthy subjects. And then, as the patient does the

rehabilitation, the parameters are designed for the patient by the adaptive method.
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Appendix A

Proofs

A.1 Proof of Theorem 1

For convenience, we define Q = Q1 +Q2 and vi j = v j, j = 1, . . . ,Di. Any vector

hi can be normalized such that hT
i Qhi = 1 and the cost function keeps unchanged.

Therefore, the maximization of the cost function is equivalent to the maximization

of hT
i Qchi with the constraint that hT

i Qhi = 1. Then the Lagrangian of the cost

function is

L = hT
i Qchi − ζ(hiQhi − 1) −

Di∑

j=1

ν jh
T
i v j, (A.1)

where ζ and ν1, . . . , νDi are Lagrange multipliers. The partial derivative of L with

respect to hi is

∂L
∂hi
= 2Qchi − 2ζQhi −

Di∑

j=1

ν jv j. (A.2)

Then, ∂L/∂hi is zero when

ζ =
hT

i Qchi

hT
i Qhi

, (A.3)
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because by left-multiplying hT
i in ∂L/∂hi = 0, we obtain

2hT
i Qhi − 2ζhT

i Qchi −
Di∑

j=1

ν jh
T
i v j = 0, (A.4)

where the third term in the left-hand is zero because hT
i v j = 0 for i ! j. We define

V by (4.15) and ν as

ν = [ν1, ν2, . . . , νDi]
T (A.5)

and rewrite A.4 to

2hT
i Qhi − 2ζhT

i Qchi − V ν = 0. (A.6)

Then, multiplying ∂L/∂hi = 0 by V TQ−1 is

2V TQ−1Qchi − V TQ−1V ν = 0, (A.7)

because

2ζV TQ−1Qhi = 0. (A.8)

Thus,

ν = 2(V TQ−1V )−1V TQ−1Qchi. (A.9)

By substituting (A.9) into ∂L/∂hi = 0, we obtain

2Qchi − 2ζQchi − 2V (V TQ−1V )−1V TQ−1Qchi = 0

GQchi = ζQhi, (A.10)

where G is defined in (4.14). Since ζ is the criterion to be maximized, the maxi-

mum solution of the optimization problem is achieved by the unit-length general-

ized eigenvector corresponding to the largest generalized eigenvalue of (4.12).



A.2. PROOF OF PROPOSITION 1 111

A.2 Proof of Proposition 1

We first consider an upper bound of Ĵ(w,h). For convenience, we define

Pd = EX∈Cd [αX(w,h, b)], (A.11)

for d = 1, 2. Therefore, we can represent Ĵ(P) as Ĵ(P) = Pc/(P1 + P2), where

P = {w,h, b}. Then,

Ĵ(P) =
Pc

P1 + P2
≤ 1, (A.12)

because,

P1, P2 < P1 + P2. (A.13)

It is the upper bound of the cost function, Ĵ(P).

Note that

Ĵ(w(k),h(k), b(k)) = Ĵ(P(k)) > 0. (A.14)

Given w(k+1) by solving (4.10) with fixed h(k) and b(k). Then the relationship;

0 ≤ Ĵ(w(k) |h(k), b(k)) ≤ Ĵ(w(k+1) |h(k), b(k)) ≤ 1, (A.15)

is given, because Ĵ(w |h(k), b(k)) with the constraint and fixing h(k), b(k) achieves

its maximum by w(k+1). Moreover the relationship yields

0 ≤ Ĵ(w(k),h(k), b(k)) ≤ Ĵ(w(k+1),h(k), b(k)) ≤ 1. (A.16)

In a similar way, it holds that;

0 ≤ Ĵ(w(k),h(k), b(k)) ≤ Ĵ(w(k),h(k+1), b(k)) ≤ 1, (A.17)

and

0 ≤ Ĵ(w(k),h(k), b(k)) ≤ Ĵ(w(k),h(k), b(k+1)) ≤ 1, (A.18)

This completes the proof.
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