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Abstract

We propose novel methods for finding a frequency filter for classification of

EEG in motor imagery based brain computer interface (MI-BCI). For MI-

BCI, spatial weights for electrodes called common spatial pattern (CSP) are

known effective in classification. To find spatial weights associated with mo-

tor imagery, EEG signals should be bandpass-filtered. However, the best

filter depends on subjects and trials. This thesis solves the problem to find

parameters of the filter, which is parameterized in the frequency or time do-

main. Finding the optimal parameters is formulated as a constraint minimum

variance problem as a natural extension of CSP. Then, the spatial weight

and the filter are sought by alternately solving the generalized eigenvalue

problem, and the cost function monotonically decreases by the alternative

optimization. In our experiment of classification for MI-BCI, the proposed

methods outperform conventional methods in the classification accuracy for

most of subjects.
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Chapter 1

Introduction

Brain computer interface (BCI) is a challenging application of signal pro-

cessing and neuroscience. A promising realization of BCI is so-called motor

imagery based BCI (MI-BCI) [1, 2]. Basically, noninvasive measurement de-

vices such as electroencephalogram (EEG), magnetoencephalogram (MEG),

and functional magnetic response imaging (fMRI) are widely used to observe

the brain activity of motor imagery. Among them, because of its simplicity

and low cost, EEG is a practical measurement device for use in engineer-

ing applications. MI-BCI uses as features the mu rhythm, which disappears

around motor cortex when a body moves. Left hand movement affects the

right motor cortex in brain, and vise versa [1]. Therefore, by accurately

capturing these changes from measured EEG signals in the presence of mea-

surement noise and spontaneous components related other brain activities,

the motor imagery can be used for BCI control [1, 2].

A promising method for extracting the brain activity for MI-BCI is the

so-called common spatial pattern (CSP) [3,4]. CSP gives a coefficient corre-
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sponding to each electrode in a multichannel EEG measurement system. The

coefficients, that are the spatial weights, are determined from learning data in

such a way that the variance of the extracted signals differ between two classes

(e.g. left and right hand movement imageries). Although together with the

spatial weights, an input EEG signal is successfully classified, for the effective

implementation, the observed signal should be bandpass-filtered to extract

frequency components associated with motor imagery activities [3]. For the

bandpass filtering, a passband of 7–30Hz is widely chosen in MI-BCI, because

mu and beta rhythms which are associated with motor imagery, are included

in this band [1]. However, the optimum frequency band for classification is

highly dependent on users and measurement environments. Therefore, for

accurate classification, it is necessary to find the best frequency band or the

filter for each user and/or dataset. To this end, it would be simple to search

the parameters by using cross validation (CV) over learning samples. In this

method, we search by CV for the filter that gives the best classification ac-

curacy out of a finite number of candidates which have various passbands.

Hence performance in classification depends on the choice of candidate fil-

ters, and the selected filter is not always “optimal.” Moreover, a large size of

the candidate set leads to higher computational cost. Therefore, it is crucial

to establish a finding the optimal filter for classification in MI-BCI.

Recently, several approaches to this problem have been proposed [5–7].

Common spatio-spatial pattern (CSSP) [5] and common sparse spectral spa-

tial pattern (CSSSP) [6] are the methods that obtain coefficients of a finite

impulse response (FIR) filter by applying CSP to the combination of ob-

served signals with the time-delayed signals. However, CSSP provides very
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poor frequency selectivity due to the limitation of a single delay. Moreover,

CSSSP needs the computationally expensive optimization because the opti-

mization problem for the filter should be solved by the gradient method and

an extensive parameter tuning is needed. Spectrally weighted CSP (SPEC-

CSP) uses an iterative procedure of optimizing spatial weights and a filter [7],

where the spatial weights are optimized by CSP and the filter parameterized

by weights for the spectrum is found by an optimization problem based on

Fisher’s criterion. These two optimization problems are alternately solved,

however this alternative iteration is not guaranteed to be converged, because

the cost functions for these two problems are different. In summary, the these

methods have problem on optimization processes such as computational in-

efficiency and no guarantee of convergence.

This thesis proposes novel methods for finding the optimal parameters of

the filter. The filter is parameterized by i) parameterization as weights for

the spectrum in the frequency domain, ii) parameterization as a temporal

filter in the FIR filter in the time domain. In both parameterization, the

optimal parameters, that is the spatial weight and the filter, are sought

by alternately minimizing the proposed variance cost, which is a natural

extension of the cost function for CSP. Unlike SPEC-CSP, it is guaranteed

that the cost function monotonically decreases by iterations, because the

both of the proposed methods optimize two optimization parameters in the

single cost function. Both of the optimization problems can be reduced

to generalized eigenvalue problems, which can be solved by well-established

optimization methods unlike gradient method that CSSSP uses.

This thesis is organized as follows. Chapter 3 reviews the CSP method
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and the CSP based filter design methods (CSSP and SPEC-CSP). Next, we

propose the spectral weight design method in Sec. 4.1 and the FIR filter

design method in Sec. 4.2. Chapter 5 presents experimental results of classi-

fication of EEG signals during motor imageries to show the effectiveness of

the proposed methods. Finally, the conclusion of this thesis is presented in

chapter 6.

1.1 Notations

The following notation and mathematical operations are used in the thesis.

• Scalar is denoted by a italic letter e.g. x or X.

• Vector is denoted by a italic bold lower-case letter e.g. x. x[i] denotes

the ith entry of x, where i is a positive integer.

• Matrix is denoted by a italic bold uppercase letter e.g. X. [X]i,j

denotes the entry in ith row and jth column, where i and j are positive

integers.
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Chapter 2

Brain Computer Interfaces

A brain computer interface (BCI) is a communication system in which mes-

sages or commands that an individual sends to the external world do not pass

through the brain’s normal output pathway of peripheral nerves and mus-

cles [2]. Like any communication or control system, a BCI has input (e.g.

electrophysiological activity from the user), output (i.e. device commands),

components that translate input into output, and a protocol that determines

the onset, offset, and timing of operation. Figure 2.1 shows these elements

and their principal interactions. In Fig. 2.1, the brain activities are measured

by electroencephalogram (EEG). Sec. 2.1 shows other measure equipments

for observing brain activity. Moreover, the BCI systems are sorted by the dif-

ference of the external stimuli or mental tasks [2,8] such as P300 [19], steady

state visual evoked response (SSVEP) [13], and motor imagery (MI) [4] based

BCI. In this study, we focus on MI-BCIs. In Sec. 2.2, we introduce the brain

activities related to motor imagery.
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Figure 2.1: Basic design and operation of a BCI system.

2.1 Brain Activity Measures

A variety of methods for monitoring brain activity might serve as a BCI.

These include, beside electroencephalography (EEG) and more invasive elec-

trophysiological methods, magnetoencephlography (MEG), positron emission

tomography (PET), functional magnetic resonance imaging (fMRI), and op-

tical imaging. However, MEG, PET, fMRI, and optical imaging are still

technically demanding and expensive. Furthermore, PET, fMRI, and optical

imaging, which depend on blood flow, have long time constants and thus are

less amenable to rapid communication. At present, only EEG and related

methods, which have relatively short time constants, can function in most

environments, and require relatively simple and inexpensive equipment, offer
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the possibility of a new non-muscular communication and control channel, a

practical BCI.

More recent EEG systems consist of a number of electrodes, a set of dif-

ferential amplifiers (one for each channel). In an EEG measurement system,

the electrodes and their proper function are crucial for acquiring high qual-

ity data. Different types of electrodes are often used in the EEG recording

systems, such as:

• disposable (gel-less, and pre-gelled types);

• reusable disc electrodes; (made of gold, silver, stainless steel, or tin);

• headbands and electrode caps;

• saline-based electrodes;

• needle electrodes.

For multichannel recordings with a number of electrodes, the international

10/20 system has stood as the de-facto standard of electrode placement used

in EEG [1, 8]. This system describes head surface locations via relative dis-

tances between cranial landmarks over the head surface. For higher density

electrode settings, the extended international 10/20 system [9], the 10/10

system [10], and 10/5 system [11] have been used. Figure 2.2 shows the

position of electrodes in international 10/20 system and 10/10 system.

9



Fz

Cz

Pz

Fp1 Fp2

F3 F4F7 F8

C3 C4

P3 P4

O1 O2

T7 T8

P7 P8

Nz

Fpz

AFz

FCz

CPz

POz

Oz

Iz

F1 F2F5 F6F9 F10

FC1 FC2FC3 FC4FC5 FC6FT7 FT8FT9 FT10

C1 C2C5 C6

CP1 CP2CP3 CP4CP5 CP6

P1 P2P5 P6P9 P10

AF3 AF4
AF7 AF8

PO3 PO4
PO7 PO8

T9 T10

TP7 TP8TP9 TP10

F9 F10

N1 N2

PO9 PO10

I1 I2

Figure 2.2: The electrodes placements of international 10/20 and 10/10 sys-
tems. The circles indicate the position of international 10/20 system. The
circles and the cross marks indicate the position of international 10/10 sys-
tem.
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2.2 Motor-Imagery Based BCI

In awake people, primary sensory of motor cortical areas often display 8–

12 Hz EEG activity when they are not engaged in processing sensory input

or producing motor output. This idling activity, called mu rhythm when

focused over somatosensory or motor cortex and visual alpha rhythm when

focused over visual cortex, is thought to be produced by thalamocortical

circuits. Unlike the visual alpha rhythm which is obvious in most normal

people, the mu rhythm was until quite recently found only in minority. How-

ever, computer-based analyses reveal the mu rhythm in most adults. Such

analyses also show that mu rhythm activity comprises a variety of differ-

ent 8–12 Hz rhythms, distinguished from each other by location frequency,

and/or relationship to concurrent sensory input or motor output. These mu

rhythms are usually associated with 18–26 Hz beta rhythms. While some

beta rhythms are harmonics of mu rhythms, some are separable from them

by topography and/or timing, and thus are independent EEG features.

Several factors suggest that mu and/or beta rhythms could be good sig-

nal features for EEG-based communication. They are associated with those

cortical areas most directly connected to the brain’s normal motor output

channels. Movement or preparation for movement is typically accompanied

by a decrease in mu and beta rhythms, particularly contralateral to the

movement. This decrease has been called event-related desynchronization

(ERD) [12]. Its opposite, rhythm increase called event-related synchroniza-

tion (ERS) occurs after movement and with relaxation. Furthermore, and

most relevant for BCI use, ERD and ERS do not require actual movement,
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they occur also with motor imagery (i.e. imagined movement).

Since the mid-1980s, several BCIs which use mu/beta rhythms feature

have been developed. Wolpow et al. realized two-dimensional control with

cursor movement on a computer screen to eight target [14]. In 2003, Neuper

et al. (in cooperation with the Tübingen group) reported results of a pa-

tient with infantile cerebral paresis, who was trained over a period of several

months with the MI-BCI [15]. The patient was trained with a tow-target

task and was provided with feedback of ERD. Eventually, the targets were

replaced by letters and the patient could spell with the system, using a so-

called virtual keyboard [18]. The virtual keyboard allows patients to select

letters in successive binary steps. A different set of letters is presented at

the top and the bottom of the screen and the patient has to move the cursor

into that half of the screen that contains the desired letter. The spelling

rate varied between 0.2 and 2.5 letters per minute. Besides communication,

the Graz group implemented MI-BCI mediated neuroprosthesis control in

tow exemplary patients. First, a tetraplegic patient, whose residual muscle

activity of the upper limbs was restricted to the left biceps after spinal cord

injury, learned to open and close his hand with the aids of an orthosis that

reacted upon changes in the ERD. The authors report an accuracy rate of

almost 100%. In second study with the same patient, grasping movement

was realized via MI-BCI-controlled functional electrical stimulation.

In summary, MI-BCIs have been successfully tested in amyotrophic lat-

eral sclerosis (ALS), cerebral palsy, and spinal cord injury patients and may

provide communication or restoration of lost motor function. Additionally,

MI-BCIs have been tested with healthy people and many researches have

12



reported that mu and beta rhythms are good signal features for realizing

BCI [2, 8, 14,20,21].
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Chapter 3

CSP and Filter Design

Methods

CSP is an effective method for the feature extraction and classification in

two class MI-BCI. In this chapter, we review a basic CSP method [3, 4] in

Sec. 3.1. Additionally, CSSP [5] and SPEC-CSP [7], which parameterize the

bandpass filter, are reviewed in Sec. 3.2 and 3.3, respectively.

3.1 Common Spatial Pattern (CSP)

Let X ∈ RM×N be an observed signal, where M is the number of channels

and N is the number of samples. CSP finds a spatial weight vector, w ∈ RM ,

in such a way that the variance of a signal extracted by linear combination

of X is minimized in a class [3,4]. In BCI application, we do not directly use

X, but use the filtered signal described as X̂ = H(X) in CSP, where H is a

bandpass filter which passes the frequency band related to brain activity of
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motor imagery. Denote the components of X̂ by X̂ = [x̂1, . . . , x̂N ], where

x̂n ∈ RM and n is the time index. The time average of the observed signal

is given by µ = (1/N)
∑N

n=1 x̂n. Then, the time variance of the extracted

signal of X̂ is given by

σ2(X, w) =
1

N

N∑
n=1

|wT (x̂n − µ)|2, (3.1)

where ·T denotes the transpose of a vector or matrix.

We assume that sets of the learning data, C1 and C2, where Cd contains the

signals belonging to class d, d ∈ {1, 2} is a class label, and C1 ∩ C2 = φ. CSP

finds the weight vector that minimizes the intra-class variance in Cc under the

normalization of samples, where c is a class label. More specifically, for class,

c, fixed, CSP finds wc by solving the following optimization problem [3,4];

min
w

EX∈Cc [σ
2(X, w)]

subject to EX∈C1 [σ
2(X, w)] + EX∈C2 [σ

2(X,w)] = 1,

(3.2)

where EX∈Cd
[·] denotes the expectation over Cd. Then, (3.2) can be rewritten

as

min
w

wTΣcw,

subject to wT (Σ1 + Σ2)w = 1,

(3.3)

where Σd, d = 1, 2, are defined as

Σd = EX∈Cd

[
1

N

N∑
n=1

(x̂n − µ)(x̂n − µ)T

]
. (3.4)
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The solution of (3.3) is given by the generalized eigenvector corresponding

to the minimum generalized eigenvalue of the generalized eigenvalue problem

described as

Σcw = λ(Σ1 + Σ2)w. (3.5)

Though the solution of (3.3) is given by the eigenvector corresponding

to the minimum eigenvalue in (3.5), we can use the other eigenvectors for

classification [20]. The M eigenvectors can be obtained by solving (3.5) as

ŵ1, . . . , ŵM , where ŵi is the eigenvector corresponding to the ith maximum

eigenvalue of (3.5). We assume that the 2r eigenvectors are used for classi-

fication of unlabeled data, X. Then we obtain the feature vector, y ∈ R2r,

from X defined as

y =[σ2(X, ŵ1), . . . , σ
2(X, ŵr),

σ2(X, ŵM−r+1), . . . , σ
2(X, ŵM)]T . (3.6)

For classification, y is input to a classifier such as linear discriminant analysis

(LDA) [23] and support vector machine (SVM) [24].

3.2 Common Spatio-Spectral Pattern (CSSP)

CSSP is a method where a weight vector is obtained by applying the combina-

tion of observed signals with time-delayed signals to CSP [5]. Let X ∈ RM×N

be an observed signal with M channels and N samples. Let X1 and X2

be the subsignals included in X. The components of X1 and X2 are de-

fined as [X1]m,n = [X]m,n and [X2]m,n = [X]m,n+τ , respectively, where
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m = 1, . . . , M , n = 1, . . . , N − τ , τ is a delay sample, and [·]i,j denotes the

entry in ith row and jth column of a matrix. Then the τ -delay embedded

signal is defined as

Xτ =

 X1

X2

 ∈ R2M×(N−τ). (3.7)

CSSP uses Xτ to seek the spatial weight vector.

For classification, CSSP can give the feature vector as follows. We ob-

tain 2M eigenvectors, ŵi ∈ R2M , i = 1, . . . , 2M , from (3.5) using Xτ . We

compose the feature vector, y ∈ R2r, in a way similar to (3.6).

In CSSP, the weight vector, ŵi, can be regarded as a set of FIR filters

corresponding to channels in the following way [5]. Let w0 and wτ be the

weight coefficients for the original signal and the delayed signal corresponding

to the jth channel in the ith weight vector given by w0 = ŵi[j] and wτ =

ŵi[j+M ], where a[i] denotes the entry of a. Then, the set, {w0, 0, . . . , 0︸ ︷︷ ︸
τ−1

, wτ},

is regarded as the coefficients of the FIR filter.

3.3 Spectrally Weighted CSP (SPEC-CSP)

SPEC-CSP uses an iterative procedure to achieve optimization of both of

spatially weights and filters [7]. A filtered signal of an observed signal, X,

can be written by X̂ = XFNBF−1
N with the discrete Fourier transform

matrix, FN ∈ C
N×N , defined as [FN ]k,l = (1/

√
N)e−2π(k−1)(l−1)/N , k, l =

1, . . . , N , and a filter in frequency domain, B, represented by a diagonal

matrix, B = diag(b1, . . . , bN). In SPEC-CSP, the feature value from X is
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defined with the spatial weigh vector, w, and the spectral weight, B, as

v(X,w, β) = wT XFNBBT FNXT w = wT

(
N∑

k=1

b2
kVk

)
w (3.8)

where we define G = XF = [g1, . . . , gN ], Vk = gkg
T
k , and β = [b2

1, . . . , b
2
N ]T .

SPEC-CSP decides 2r weight vectors, ŵi, and 2r filters, βi, by alternately

optimizing with CSP for ŵi and the optimization problem based on Fisher’s

criterion for βi, where i = 1, . . . , 2r.

In optimization for ŵi, covariance matrices for each βi are defined as

Σi
d = EX∈Cd

[∑N
k=1 βk,iVk

]
, d = 1, 2, where the elements of βi are denoted

by βi = [β1,i, . . . , βN,i]
T , and Cd is the set of the learning data belonging to

class d. Then we solve the generalized eigenvalue problem;

Σi
cw = λΣi

c̄w, (3.9)

where c is an optional class label such that c ∈ {1, 2} and c̄ is other class label.

Let w̄i
1, . . . , w̄

i
M be the generalized eigenvectors corresponding to generalized

eigenvalues, λi
1, . . . , λ

i
M , a and b are chosen by a = argmini=1,...,rλ

i
1 and b =

argmaxi=1,...,rλ
i
M , and then, the 2r spatial weight vectors are defined as ŵj =

w̄a
j , j = 1, . . . , r and ŵj = w̄b

M−2r+j, j = r + 1, . . . , 2r.

Next, SPEC-CSP formulates the optimization problem for βi as

max
βi

EX∈Cc [si] − EX∈Cc̄ [si]√∑
d=1,2 EX∈Cd

[|si − EX∈Cd
[si]|2]

,

subject to βk,i ≥ 0, ∀k = 1, . . . , N,

(3.10)

where si is defined as si =
∑N

k=1 βk,iŵ
T
i Vkŵi. Here, we define γi

k = EX∈Cc [ŵ
T
i Vkŵi]−
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EX∈Cc̄ [ŵ
T
i Vkŵi] and ζ i

k =
∑

d=1,2 EX∈Cd
[|ŵT

i Vkŵi − EX∈Cd
[ŵT

i Vkŵi]|2]. Be-

cause si is linear with respect to βk,i, k = 1, . . . , N , and we assume that the

signal is a stationary Gaussian process where the frequency components are

independent to each other, the solution of (3.10) is

βk,i ∝


γi

k/ζ
i
k γi

k ≥ 0

0 otherwise.
(3.11)

Because the norm of βi cannot be determined by (3.11), we normalize βi so

that they sum to one.

SPEC-CSP optimizes ŵi and βi by iteration of the optimization problems,

(3.9) and (3.10). After ŵi and βi are obtained, The feature vector, y ∈ R2r

from an observed signal, X, is defined as

y = [v(X, ŵ1,β1), . . . , v(X, ŵ2r, β2r)]
T . (3.12)
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Chapter 4

Proposed Filter Design

Methods

Though CSP is effective in MI-BCI, the classification accuracy depends on

the choice of the bandpass filter H [3]. In this chapter, we present the

methods for designing the filter. The proposed methods optimize the filter

and the spatial weight by using the cost extended from the CSP cost. We

introduce a design method by parameterizing the filter as weights for the

spectrum of an EEG signal in Sec. 4.1. We also introduce a design method

by parameterizing the filter with FIR in the time domain in Sec. 4.2.

4.1 Spectral Weight Design Method

4.1.1 Feature Extraction

Let X ∈ RM×N be a matrix consisting of an observed signal with M channels

and N samples, and denote the components of X by X = [x1, . . . , xN ],

20



xn ∈ RM . Without loss of generality, we assume that xn is zero mean. This

can be achieved by replacing xn by xn−(1/N)
∑N

n=1 xn. Let X̃l, l = 1, . . . , L,

be subsignals or frames defined as follows. In component-wise, frame signal,

X̃l ∈ R
M×2N ′

, with the frame length of 2N ′ and the frame shift of D is

defined as

[X̃l]m,n = [X]m,(l−1)D+n. (4.1)

Then, the number of frames is given by L = fix((N − 2N ′)/D + 1), where

fix(·) is the rounding operator. Moreover, we define Ỹl ∈ RM×N ′
as

[Ỹl]m,n = |[X̃lF2N ′ ]m,n|, (4.2)

where m = 1, . . . , M and n = 1, . . . , N ′. Because X̃l is real-valued, rows

of |X̃lFN ′| are symmetric. Hence, we can leave out duplicated components,

that is, components corresponding to the negative frequency. We introduce

h ∈ R
N ′

to weight the spectra of the observed signal, and h acts as a

filter. The filtered spectra, Ỹlh, is used for finding spatial weights in the

same manner as CSP. More specifically, as done in CSP, the feature value is

defined as

z(X,w, h) =
L∑

l=1

|wT Ỹlh|2, (4.3)

where w ∈ RM represents the spatial weight vector.

4.1.2 Optimization

The underlying idea behind the proposed method is to find both w and h

for class c that minimize z with respect to X ∈ Cc under the normalization
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of samples. For c fixed, wc and hc is obtained by solving the optimization

problem defined as

min
w,h

f(w,h) = EX∈Cc [z(X, w, h)]

subject to ν(w,h) =
∑

d=1,2

EX∈Cd
[z(X, w,h)] = 1.

(4.4)

Since we cannot seek for w and h simultaneously, we derive two subproblems

that separately find w and h.

The subproblem to optimize w while fixing h is as follows. z can be

expanded to

z(X, w,h) = wT

(
L∑

l=1

ỸlhhT Ỹl
T
)

w, (4.5)

and we define

Rd(h) = EX∈Cd

[
L∑

l=1

ỸlhhT Ỹl
T
]
, d = 1, 2. (4.6)

Then, (4.4) can be rewritten as

min
w

f1(w|h) = wT Rc(h)w,

subject to ν1(w|h) = wT (R1(h) + R2(h))w = 1.

(4.7)

The solution of (4.7) is given by the generalized eigenvector corresponding

to the minimal generalized eigenvalue of the generalized eigenvalue problem

described as

Rc(h)w = λ(R1(h) + R2(h))w. (4.8)

The subproblem to optimize h while fixing w is as follows. z can be

22



expanded to

z(X, w,h) = hT

(
L∑

l=1

Ỹl
T
wwT Ỹl

)
h, (4.9)

and we define

Qd(w) = EX∈Cc

[
L∑

l=1

Ỹl
T
wwT Ỹl

]
, d = 1, 2. (4.10)

Then (4.4) can be rewritten as

min
h

f2(h|w) = hT Qc(w)h,

subject to ν2(h|w) = hT (Q1(w) + Q2(w))h = 1.

(4.11)

The solution of (4.11) is given by the generalized eigenvector corresponding

to the minimal generalized eigenvalue of the generalized eigenvalue problem

described as

Qc(w)h = λ(Q1(w) + Q2(w))h. (4.12)

The iteration of the alternative update monotonically decreases f(w,h),

and leads to a local minimum solution. In implementation, we initialize h as

the N ′-dimensional vector whose elements are all 1, and start the alternative

update from updating w. The iteration is stopped, when f(w,h) reaches

a certain criterion. For example, we stop iteration when f (k−1) − f (k) ≤ ε,

where f (k) is the value of f(w,h) in the kth iteration, and ε > 0 is a minimum

error of the cost between successive iterations.
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4.1.3 Feature Vector Definition

The following method can be applied to classification of unlabeled data, X.

First, we choose a class label, g, in {1, 2}, and then we obtain wg and hg

by (4.4) with the learning dataset. Next, we calculate Rd(hg), d = 1, 2 by

(4.6), and solve (4.8). Then, we obtain the M eigenvectors as ŵ1, . . . , ŵM ,

where ŵi is the eigenvector corresponding to the ith minimum eigenvalue of

(4.8). We assume that the 2r eigenvectors are used for classification. Then

the feature vector y ∈ R2r is defined as

y =[z(X, ŵ1,hg), . . . , z(X, ŵr,hg),

z(X, ŵM−r+1,hg)), . . . , z(X, ŵM , hg)]
T . (4.13)

As well as the case of CSP, we input y to a classifier for classification.

4.2 FIR Filter Design Method

We establish the other approach for designing a filter when the filter is given

as a standard FIR filter.

4.2.1 Feature Extraction

Let X ∈ RM×N be a matrix consisting of an observed signal with M channels

and N samples, and denote the components of X by X = [x1, . . . , xN ],

xn ∈ RM . Let θp, p = 1, . . . , P be the filter coefficients where P is the order

of the filter, and the filtered signal of X denoted as X̂ = [x̂1, . . . , x̂K ], can
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be defined for n = 1, . . . , K, as

x̂n =
P∑

p=1

θpxn+P−p, (4.14)

where K = N −P + 1. The variance of the extracted signal of CSP given in

(3.1) is given with the spatial weight, w, and the FIR filter, θ, by

ρ(X,w, θ) =
1

K

K∑
n=1

∣∣∣∣∣∣wT
P∑

p=1

θkxn+P−p − µ

∣∣∣∣∣∣
2

, (4.15)

where θ is the vector of the filter coefficients defined as θ = [θ1, . . . , θP ]T ,

and µ is the time average given by µ = (1/K)
∑K

n=1 wT ∑P
p=1 θkxn+P−p. We

define An, n = 1, . . . , K, whose elements are from X defined as

[An]m,p = [X]m,n+P−p+1, (4.16)

where m = 1, . . . , M , p = 1, . . . , P . Therefore, (4.15) can be modified to

ρ(X, w, θ) =
1

K

K∑
n=1

∣∣∣∣∣wT Anθ − 1

K

K∑
m=1

wT Amθ

∣∣∣∣∣
2

=
1

K

K∑
n=1

∣∣∣wT Ânθ
∣∣∣2 , (4.17)

where Ân is defined as Ân = An − (1/K)
∑K

m=1 Am.

4.2.2 Optimization

As well as CSP, the underlying idea behind the proposed method is to find

both w and θ that minimize ρ with respect to X ∈ Cc under the normal-
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ization samples. For c fixed, wc and θc is obtained by solving the following

optimization problem:

min
w,θ

g(w, θ) = EX∈Cc [ρ(X,w, θ)]

subject to ζ(w,θ) =
∑

d=1,2

EX∈Cd
[ρ(X, w,θ)] = 1.

(4.18)

As we have done in Sec. 4.1, we derive two subproblems that separately find

w and θ.

The subproblem to optimize w while fixing θ is as follows. ρ(X,w,θ) is

can be written as

ρ(X,w, θ) = wT

(
1

K

K∑
n=1

ÂnθθT ÂT
n

)
w, (4.19)

and we define

Φd(θ) = EX∈Cd

[
1

K

K∑
n=1

ÂnθθT ÂT
n

]
, d = 1, 2. (4.20)

Then (4.18) can be written as

min
w

g1(w|θ) = wTΦc(θ)w

subject to ξ1(w|θ) = wT (Φ1(θ) + Φ2(θ))w = 1.

(4.21)

The solution of (4.21) is given by the generalized eigenvector corresponding

to the minimal generalized eigenvalue of the generalized eigenvalue problem

described as

Φc(θ)w = λ(Φ1(θ) + Φ2(θ))w. (4.22)
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The subproblem to optimize θ while fixing w is as follows. ρ(X,w,θ) is

can be written as

ρ(X,w, θ) = θT

(
1

K

K∑
n=1

ÂT
nwwT Ân

)
θ, (4.23)

and we define

Ψd(w) = EX∈Cd

[
1

K

K∑
n=1

ÂT
nwwT Ân

]
, d = 1, 2. (4.24)

Then (4.18) can be written as

min
θ

g2(θ|w) = θTΨc(w)θ

subject to ξ2(θ|w) = θT (Ψ1(w) + Ψ2(w))θ = 1,

(4.25)

The solution of (4.25) is given by the generalized eigenvector corresponding

to the minimal generalized eigenvalue of the generalized eigenvalue problem

described as

Ψc(w)θ = λ(Ψ1(w) + Ψ2(w))θ. (4.26)

As well as the method shown in Sec. 4.1, we alternately optimize w and θ

by solving the optimization problems of (4.21) and (4.25). In implementation,

we initialize θ as the P -dimensional vector as θ = [1, 0, . . . , 0]T , and start the

alternative update from updating w. The iteration is stopped, when g(w, θ)

reaches a certain criterion.
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4.2.3 Feature Vector Definition

The method can extract the feature vector from an unlabeled data, X, by

the following way. First, we choose a class label, g, in {1, 2}, and then we

obtain wg and θg by (4.18) with the learning dataset. Next, we calculate

Φd(θg), d = 1, 2 by (4.20), and solve (4.22). Then, we obtain the M eigen-

vectors as ŵ1, . . . , ŵM , where ŵi is the eigenvector corresponding to the ith

minimum eigenvalue of (4.22). We assume that the 2r eigenvectors are used

for classification. Then the feature vector, y ∈ R2r is defined as

y =[ρ(X, ŵ1, θg), . . . , ρ(X, ŵr, θg),

ρ(X, ŵM−r+1, θg)), . . . , ρ(X, ŵM , θg)]
T . (4.27)

As well as the case of CSP, we input y to a classifier.

4.3 Convergence of the Cost Function in the

Optimization

The alternative optimizations of the proposed methods do not increase the

cost functions and lead to local minimum solutions of (4.4) and (4.18). Here

we give the guarantee of convergence of the cost in alternative iterations.

Proposition 1. The cost function of (4.4) monotonically decreases or re-

mains the same by iterations. That is,

f(w(k),h(k)) ≥ f(w(k+1),h(k+1)), (4.28)
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where w(k) and h(k) are the parameters at kth iteration.

Proof. Note that

f(w(k),h(k)) = f1(w
(k)|h(k)) = f2(w

(k)|h(k)) ≥ 0, (4.29)

and

ν(w(k),h(k)) = ν1(w
(k)|h(k)) = ν2(w

(k)|h(k)) = 1. (4.30)

Suppose w(k+1) is given by minimizing (4.7) with Rd(h
(k)). Then the rela-

tionship;

f1(w
(k)|h(k)) ≥ f1(w

(k+1)|h(k)), (4.31)

is given, because f1(w|h(k)) with constraint of ν1(w|h(k)) = 1 and fixing h(k)

achieves its minimum by w(k+1). Moreover (4.31) leads

f(w(k),h(k)) ≥ f(w(k+1),h(k)). (4.32)

In a similar way, the relationship;

f(w(k),h(k)) ≥ f(w(k),h(k+1)), (4.33)

is given. This completes the proof.

In a similar way, that (4.18) does not increase by the alternative opti-

mization is also guaranteed.
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Chapter 5

Experiment

We compare performance in classifying EEG signals during motor imagery

using the proposed methods to that using conventional methods (CSP, CSSP,

and SPEC-CSP).

5.1 Data Description

We used dataset IVa from BCI competition III [21], which was provided by

Fraunhofer FIRST (Intelligent Data Analysis Group) and Campus Benjamin

Franklin of the Charité - University Medicine Berlin (Department of Neurol-

ogy, Neurophysics Group) [22]. This dataset consists of EEG signals during

right hand and right foot motor-imageries. The EEG signals were recorded

from five subjects labeled aa, al, av, aw, and ay. 118 EEG channels were

measured at positions of the extended international 10/20-system. The mea-

sured signal was bandpass filtered with the passband of 0.05–200 Hz, and

then digitized at 1000 Hz with 16 bit (0.1 µV). During each experiment, the
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subject was given visual cues that were indicated for 3.5 seconds which of the

three motor imagery should be performed: left hand, right hand, and right

foot. The resting interval between two trials was randomized from 1.75–

2.25 seconds. Only EEG trials for right hand and right foot were provided.

In this experiment, we furthermore applied to this data the lowpass filter

whose the cutoff frequency is 50 Hz, and downsampled to 100 Hz. The

dataset for each subject consisted of signals of 140 trials. A signal of one

trial was measured for 3.5 seconds after a visual cue.

5.2 Result

First, we compare classification accuracy of the proposed methods with that

of conventional methods in Sec. 5.2.1. The behavior of the cost function

in the alternative optimizations are illustrated in Sec. 5.2.2. We discuss the

amplitude characteristic of the filter and the spatial weights in each method in

Sec. 5.2.3 and 5.2.4. Moreover, in Sec. 5.2.5, we consider suitable parameters

in the proposed methods.

5.2.1 Classification Accuracy

In classification experiments, we extracted the feature vector from the EEG

signal by each method, and classified the feature vector by linear support

vector machine (linear SVM) [24]. The feature vector was extracted as fol-

lows.

• CSP1: A feature vector defined in (3.6) is used. We applied the But-

terworth bandpass filter with the passband of 7–30 Hz, and minimized
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the variance cost of the right hand class in (3.2).

• CSSP: We minimized the variance cost of the right hand class in (3.2).

And, we optimized τ (τ was chosen in 1–15 samples) by 5×5 CV in

the learning dataset for each CV. The signals are applied the bandpass

filter between 7–30 Hz as preprocessing.

• SPEC-CSP: We assumed that the filter coefficients not corresponding

to 7–30 Hz are 0. The iteration number in alternative optimization was

30.

• Proposed1: A feature vector defined in (4.27) is used, where the class

corresponding to the right hand movement imagery was chosen as the

class, g. The frame length, N , and the frame delay, D, were set to 30

and 5, respectively. In optimization, we stopped iteration, when error

of the cost function between successive iterations becomes under 10−5.

• Proposed2: A feature vector defined in (4.27) is used, where the class

corresponding to the right hand movement imagery was chosen as the

class, g. The filter order, P , was set to 20. In optimization, we stopped

iteration, when error of the cost function between successive iterations

becomes under 10−5.

The extracted feature vector was classified by linear SVM with the soft mar-

gin parameter of 50 [24]. The linear SVM was implemented with SVM-

Light [25]. Table 5.1 shows classification accuracy in each method which

is calculated with 5 × 5 CV. For reference, we show in table 5.1 the accu-

racy given by the method using the filter which is searched manually. The
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Table 5.1: Classification accuracy [%] given by 5×5 CV. The figures in the
round brackets beside accuracies represent the number of dimensions of the
feature vector used for classifications.

Subject
Method aa al av aw ay
CSP1 81.7 (2) 94.6 (6) 68.3 (8) 95.9 (6) 89.6 (2)
CSP2 88.4 (4) 98.6 (2) 74.4 (10) 99.9 (6) 92.4 (4)
CSSP 84.1 (2) 95.4 (10) 69.9 (8) 96.9 (6) 90.5 (2)

SPEC-CSP 84.7 (10) 95.3 (6) 59.0 (20) 96.9 (6) 83.4 (4)
Proposed1 87.2 (2) 97.2 (2) 57.3 (18) 97.9 (2) 91.5 (2)
Proposed2 89.2 (2) 98.6 (4) 58.3 (6) 98.4 (16) 92.2 (4)

reference of classification accuracy labeled CSP2 is given as follows.

• CSP2: We show the best classification accuracy when several filters

are applied to preprocessing in CSP1. The candidates of passbands are

represented as fl–fu Hz for fl = 1, . . . , 25 and fu = fl +1, . . . , 30. That

is, the number of the candidates is 266 for each subject. The passbands

that provide the best accuracies are 11–16 Hz (aa), 12–16 Hz (al), 21–

26 Hz (av), 11–18 Hz (aw), and 9–12 Hz (ay).

It is shown that the proposed methods outperform CSSP and SPEC-CSP in

most of subjects (except to av) in classification accuracy.

Figure 5.1–5.3 shows the classification accuracy to the dimension of the

feature vector in each method. We can observe from Fig. 5.1–5.3 the depen-

dence on the dimension of the feature vector. This figure indicates that the

dimension that provides the best classification accuracies in Proposed1 for

most of subject is small and consistent, say 2, although the dimension that

gives the best accuracy that CV result in strongly depends on subjects.
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Figure 5.1: Classification accuracy for the number of the weight vectors, 2r,
in subject aa and al
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Figure 5.2: Classification accuracy for the number of the weight vectors, 2r,
in subject av and aw
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Figure 5.3: Classification accuracy for the number of the weight vectors, 2r,
in subject av and average over all subjects.
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5.2.2 Convergence of the Proposed Methods

We illustrate the behavior of the cost function in the alternative optimizations

in Fig. 5.4. The optimization parameters are optimized under the parameters

shown in Sec. 5.2.1. We can observe the monotonically decreasing and fast

convergence cost.

5.2.3 Amplitude Characteristic of the Filter

Figure 5.5 and 5.6 shows the amplitude characteristic of the filter used/ob-

tained in each method. Each method was applied to datasets under the

parameters shown in Sec. 5.2.1, and the amplitude characteristic in each

method was obtained as follows. In CSP2, we show the amplitude response

of the Butterworth filter used as preprocessing. In CSSP, we choose the coef-

ficients for the channel which has largest coefficients as w0 and wτ . We show

the amplitude response of the FIR filter given by w0 and wτ . In SPEC-CSP,

since the filter is given as the weight vector for the spectrum, we show el-

ements of the spectral weight vector, β1 shown in (3.8). In Proposed1, we

show elements of |hg| shown in (4.13). In Proposed2, we show the amplitude

characteristic of the FIR filter whose its coefficients is θg shown in (4.27). In

all methods, the amplitude characteristics are normalized the maximum to

1. From Fig. 5.5–5.6, we can observe that the frequency bands specified by

SPEC-CSP, Proposed1, and Proposed2 have large weights in the passband

of CSP2. Moreover, SPEC-CSP and Proposed1 also have large weights in

band higher than the passband of CSP2.
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Figure 5.5: Amplitude characteristic of the filter given by each method in
subject aa, al, and av. Note that the characteristics in 7–30 Hz are not
plotted in the methods which used the bandpass filter with passband of 7–
30 Hz (CSSP, Proposed2).
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Figure 5.6: Amplitude characteristic of the filter given by each method in
subject aw and ay. Note that the characteristics in 7–30 Hz are not plotted
in the methods which used the bandpass filter with passband of 7–30 Hz
(CSSP, Proposed2).

40



5.2.4 Spatial Weight

In Fig. 5.7–5.11, we topographically show amplitudes of the spatial weights

obtained by each method in subject aa and ay. Each method was applied

to datasets under the parameters shown in Sec. 5.2.1. These spatial weights

minimize the feature value of an observed signal during right hand movement

imagery. In Fig. 5.7, all of the spatial weights are almost same. However, we

can observe that the different weight vectors are obtained between the each

method in Fig. 5.11. Additionally, from Fig. 5.11a and Fig. 5.11b, we can

observed that the spatial weight is changed by the passband of a bandpass

filter.

5.2.5 Parameters in the Proposed Method

Figure 5.12 shows classification accuracy averaged over all subjects for the

parameters of Proposed1. The classification accuracy is given by 5 × 5 CV.

In Fig. 5.12, accuracy decreases in D > 50 (0.5 secs) with almost N ′, and

according as increasing N ′ decreases accuracy when D is small.

Figure 5.13 shows the classification accuracy for the parameter of Pro-

posed2 in each subject. This result suggests that the classification accuracy

decreases when the filter order is smaller than 15, and is not sensitive for the

order of the filter when the order is higher than 15.
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Figure 5.7: The coefficients of the spatial weights given by CSP and the
proposed method in subject aa. The color level represents the amplitude of
coefficients. Upper and lower part of the topography corresponds front of
the head and the back, respectively.
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Figure 5.8: The coefficients of the spatial weights given by CSP and the
proposed method in subject al as well as Fig. 5.7.

43



Fp1
AFp1

Fpz

AFp2
Fp2

AF7

AF3 AF4

AF8

FAF5
FAF1 FAF2

FAF6F7

F5
F3 F1 Fz F2 F4

F6

F8

FFC7
FFC5

FFC3 FFC1 FFC2 FFC4
FFC6

FFC8FT9

FT7
FC5

FC3 FC1 FCz FC2 FC4
FC6

FT8

FT10

CFC7 CFC5 CFC3 CFC1 CFC2 CFC4 CFC6 CFC8

T7 C5 C3 C1 Cz C2 C4 C6 T8

CCP7 CCP5 CCP3 CCP1 CCP2 CCP4 CCP6 CCP8

TP9

TP7
CP5

CP3 CP1 CPz CP2 CP4
CP6

TP8

TP10PCP7
PCP5

PCP3 PCP1 PCP2 PCP4
PCP6

PCP8

P9

P7

P5
P3 P1 Pz P2 P4

P6

P8

P10PPO7

PPO5
PPO1 PPO2

PPO6

PPO8PO7

PO3PO1POzPO2PO4

PO8OPO1 OPO2
O1 Oz O2

OI1 OI2

I1 I2

(a) CSP1

Fp1
AFp1

Fpz

AFp2
Fp2

AF7

AF3 AF4

AF8

FAF5
FAF1 FAF2

FAF6F7

F5
F3 F1 Fz F2 F4

F6

F8

FFC7
FFC5

FFC3 FFC1 FFC2 FFC4
FFC6

FFC8FT9

FT7
FC5

FC3 FC1 FCz FC2 FC4
FC6

FT8

FT10

CFC7 CFC5 CFC3 CFC1 CFC2 CFC4 CFC6 CFC8

T7 C5 C3 C1 Cz C2 C4 C6 T8

CCP7 CCP5 CCP3 CCP1 CCP2 CCP4 CCP6 CCP8

TP9

TP7
CP5

CP3 CP1 CPz CP2 CP4
CP6

TP8

TP10PCP7
PCP5

PCP3 PCP1 PCP2 PCP4
PCP6

PCP8

P9

P7

P5
P3 P1 Pz P2 P4

P6

P8

P10PPO7

PPO5
PPO1 PPO2

PPO6

PPO8PO7

PO3PO1POzPO2PO4

PO8OPO1 OPO2
O1 Oz O2

OI1 OI2

I1 I2

(b) CSP2

Fp1
AFp1

Fpz

AFp2
Fp2

AF7

AF3 AF4

AF8

FAF5
FAF1 FAF2

FAF6F7

F5
F3 F1 Fz F2 F4

F6

F8

FFC7
FFC5

FFC3 FFC1 FFC2 FFC4
FFC6

FFC8FT9

FT7
FC5

FC3 FC1 FCz FC2 FC4
FC6

FT8

FT10

CFC7 CFC5 CFC3 CFC1 CFC2 CFC4 CFC6 CFC8

T7 C5 C3 C1 Cz C2 C4 C6 T8

CCP7 CCP5 CCP3 CCP1 CCP2 CCP4 CCP6 CCP8

TP9

TP7
CP5

CP3 CP1 CPz CP2 CP4
CP6

TP8

TP10PCP7
PCP5

PCP3 PCP1 PCP2 PCP4
PCP6

PCP8

P9

P7

P5
P3 P1 Pz P2 P4

P6

P8

P10PPO7

PPO5
PPO1 PPO2

PPO6

PPO8PO7

PO3PO1POzPO2PO4

PO8OPO1 OPO2
O1 Oz O2

OI1 OI2

I1 I2

(c) CSSP

Fp1
AFp1

Fpz

AFp2
Fp2

AF7

AF3 AF4

AF8

FAF5
FAF1 FAF2

FAF6F7

F5
F3 F1 Fz F2 F4

F6

F8

FFC7
FFC5

FFC3 FFC1 FFC2 FFC4
FFC6

FFC8FT9

FT7
FC5

FC3 FC1 FCz FC2 FC4
FC6

FT8

FT10

CFC7 CFC5 CFC3 CFC1 CFC2 CFC4 CFC6 CFC8

T7 C5 C3 C1 Cz C2 C4 C6 T8

CCP7 CCP5 CCP3 CCP1 CCP2 CCP4 CCP6 CCP8

TP9

TP7
CP5

CP3 CP1 CPz CP2 CP4
CP6

TP8

TP10PCP7
PCP5

PCP3 PCP1 PCP2 PCP4
PCP6

PCP8

P9

P7

P5
P3 P1 Pz P2 P4

P6

P8

P10PPO7

PPO5
PPO1 PPO2

PPO6

PPO8PO7

PO3PO1POzPO2PO4

PO8OPO1 OPO2
O1 Oz O2

OI1 OI2

I1 I2

(d) SPEC-CSP

Fp1
AFp1

Fpz

AFp2
Fp2

AF7

AF3 AF4

AF8

FAF5
FAF1 FAF2

FAF6F7

F5
F3 F1 Fz F2 F4

F6

F8

FFC7
FFC5

FFC3 FFC1 FFC2 FFC4
FFC6

FFC8FT9

FT7
FC5

FC3 FC1 FCz FC2 FC4
FC6

FT8

FT10

CFC7 CFC5 CFC3 CFC1 CFC2 CFC4 CFC6 CFC8

T7 C5 C3 C1 Cz C2 C4 C6 T8

CCP7 CCP5 CCP3 CCP1 CCP2 CCP4 CCP6 CCP8

TP9

TP7
CP5

CP3 CP1 CPz CP2 CP4
CP6

TP8

TP10PCP7
PCP5

PCP3 PCP1 PCP2 PCP4
PCP6

PCP8

P9

P7

P5
P3 P1 Pz P2 P4

P6

P8

P10PPO7

PPO5
PPO1 PPO2

PPO6

PPO8PO7

PO3PO1POzPO2PO4

PO8OPO1 OPO2
O1 Oz O2

OI1 OI2

I1 I2

(e) Proposed1

Fp1
AFp1

Fpz

AFp2
Fp2

AF7

AF3 AF4

AF8

FAF5
FAF1 FAF2

FAF6F7

F5
F3 F1 Fz F2 F4

F6

F8

FFC7
FFC5

FFC3 FFC1 FFC2 FFC4
FFC6

FFC8FT9

FT7
FC5

FC3 FC1 FCz FC2 FC4
FC6

FT8

FT10

CFC7 CFC5 CFC3 CFC1 CFC2 CFC4 CFC6 CFC8

T7 C5 C3 C1 Cz C2 C4 C6 T8

CCP7 CCP5 CCP3 CCP1 CCP2 CCP4 CCP6 CCP8

TP9

TP7
CP5

CP3 CP1 CPz CP2 CP4
CP6

TP8

TP10PCP7
PCP5

PCP3 PCP1 PCP2 PCP4
PCP6

PCP8

P9

P7

P5
P3 P1 Pz P2 P4

P6

P8

P10PPO7

PPO5
PPO1 PPO2

PPO6

PPO8PO7

PO3PO1POzPO2PO4

PO8OPO1 OPO2
O1 Oz O2

OI1 OI2

I1 I2

(f) Proposed2

Figure 5.9: The coefficients of the spatial weights given by CSP and the
proposed method in subject av as well as Fig. 5.7.
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Figure 5.10: The coefficients of the spatial weights given by CSP and the
proposed method in subject aw as well as Fig. 5.7.
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Figure 5.11: The coefficients of the spatial weights given by CSP and the
proposed method in subject ay as well as Fig. 5.7.
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Chapter 6

Conclusions

We have proposed a novel method for classification of EEG signals during

motor imagery. Unlike CSP, parameters to be found are not only spatial

weights but also frequency filters. The cost function to determine the pa-

rameters is defined as a natural extension of CSP. The optimal parameters

are found by alternately solving the generalized eigenvalue problems. By

experiment, we have demonstrated that the proposed methods achieve high

classification accuracy. Our experimental results suggest also that the pro-

posed methods can specify the frequency band same as the band searched

by manually.

Because the classification accuracy by the proposed method can be vari-

able under the influences of parameters, we will clarify this causes and solve

the problem of the parameter tuning. Moreover, we will develop the algo-

rithm for online application.
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